-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathseamless_cloning.py
214 lines (177 loc) · 10.2 KB
/
seamless_cloning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import cv2
import numpy as np
import scipy.sparse.linalg
from PIL import Image
import matplotlib.pyplot as plt
from argparse import ArgumentParser
import pyamg
import utils
class PoissonSeamlessCloner:
#@profile
def __init__(self, dataset_root, solver, scale):
self.mask = utils.read_image(f"{dataset_root}", "mask", scale=scale, gray=True)
self.src_rgb = utils.read_image(f"{dataset_root}", "source", scale=scale, gray=False)
self.target_rgb = utils.read_image(f"{dataset_root}", "target", scale=scale, gray=False)
self.solver = solver
if solver != "multigrid":
self.solver_func = getattr(scipy.sparse.linalg, solver)
else:
self.solver_func = None
self.img_h, self.img_w = self.mask.shape
_, self.mask = cv2.threshold(self.mask, 0.5, 1, cv2.THRESH_BINARY) # fix here
self.inner_mask, self.boundary_mask = utils.process_mask(self.mask)
self.pixel_ids = utils.get_pixel_ids(self.mask)
self.inner_ids = utils.get_masked_values(self.pixel_ids, self.inner_mask).flatten()
self.boundary_ids = utils.get_masked_values(self.pixel_ids, self.boundary_mask).flatten()
self.mask_ids = utils.get_masked_values(self.pixel_ids, self.mask).flatten() # boundary + inner
self.inner_pos = np.searchsorted(self.mask_ids, self.inner_ids)
self.boundary_pos = np.searchsorted(self.mask_ids, self.boundary_ids)
self.mask_pos = np.searchsorted(self.pixel_ids.flatten(), self.mask_ids)
#@profile
def construct_C_matrix(self):
n1_pos = np.searchsorted(self.mask_ids, self.inner_ids - 1)
n2_pos = np.searchsorted(self.mask_ids, self.inner_ids + 1)
n3_pos = np.searchsorted(self.mask_ids, self.inner_ids - self.img_w)
n4_pos = np.searchsorted(self.mask_ids, self.inner_ids + self.img_w)
#C = scipy.sparse.lil_matrix((3 * len(self.mask_ids), 3 * len(self.mask_ids)))
#for i in range(3):
# offset = i * len(self.mask_ids)
# C[offset + self.inner_pos, offset + n1_pos] = 1
# C[offset + self.inner_pos, offset + n2_pos] = 1
# C[offset + self.inner_pos, offset + n3_pos] = 1
# C[offset + self.inner_pos, offset + n4_pos] = 1
# C[offset + self.inner_pos, offset + self.inner_pos] = -4
# C[offset + self.boundary_pos, offset + self.boundary_pos] = 1
#C = C.tocsr()
l = len(self.mask_ids)
row_ids = np.concatenate([
self.inner_pos, self.inner_pos, self.inner_pos, self.inner_pos, self.inner_pos, self.boundary_pos,
l + self.inner_pos, l + self.inner_pos, l + self.inner_pos, l + self.inner_pos, l + self.inner_pos, l + self.boundary_pos,
2 * l + self.inner_pos, 2 * l + self.inner_pos, 2 * l + self.inner_pos, 2 * l + self.inner_pos, 2 * l + self.inner_pos, 2 * l + self.boundary_pos
])
col_ids = np.concatenate([
n1_pos, n2_pos, n3_pos, n4_pos, self.inner_pos, self.boundary_pos,
l + n1_pos, l + n2_pos, l + n3_pos, l + n4_pos, l + self.inner_pos, l + self.boundary_pos,
2 * l + n1_pos, 2 * l + n2_pos, 2 * l + n3_pos, 2 * l + n4_pos, 2 * l + self.inner_pos, 2 * l + self.boundary_pos
])
data = ([1] * len(self.inner_pos) * 4 + [-4] * len(self.inner_pos) + [1] * len(self.boundary_pos)) * 3
C = scipy.sparse.csr_matrix((data, (row_ids, col_ids)), shape=(3 * len(self.mask_ids), 3 * len(self.mask_ids)))
return C
def construct_A_matrix(self):
n1_pos = np.searchsorted(self.mask_ids, self.inner_ids - 1)
n2_pos = np.searchsorted(self.mask_ids, self.inner_ids + 1)
n3_pos = np.searchsorted(self.mask_ids, self.inner_ids - self.img_w)
n4_pos = np.searchsorted(self.mask_ids, self.inner_ids + self.img_w)
#row_ids = np.concatenate([self.inner_pos, self.inner_pos, self.inner_pos, self.inner_pos, self.inner_pos, self.boundary_pos])
#col_ids = np.concatenate([n1_pos, n2_pos, n3_pos, n4_pos, self.inner_pos, self.boundary_pos])
#data = [1] * len(self.inner_pos) * 4 + [-4] * len(self.inner_pos) + [1] * len(self.boundary_pos)
#A = scipy.sparse.csr_matrix((data, (row_ids, col_ids)), shape=(len(self.mask_ids), len(self.mask_ids)))
A = scipy.sparse.lil_matrix((len(self.mask_ids), len(self.mask_ids)))
A[self.inner_pos, n1_pos] = 1
A[self.inner_pos, n2_pos] = 1
A[self.inner_pos, n3_pos] = 1
A[self.inner_pos, n4_pos] = 1
A[self.inner_pos, self.inner_pos] = -4
A[self.boundary_pos, self.boundary_pos] = 1
A = A.tocsr()
return A
def construct_b(self, inner_gradient_values, boundary_pixel_values):
b = np.zeros(len(self.mask_ids))
b[self.inner_pos] = inner_gradient_values
b[self.boundary_pos] = boundary_pixel_values
return b
#@profile
def compute_mixed_gradients(self, src, target, mode="max", alpha=1.0):
if mode == "max":
Ix_src, Iy_src = utils.compute_gradient(src)
Ix_target, Iy_target = utils.compute_gradient(target)
I_src_amp = (Ix_src**2 + Iy_src**2)**0.5
I_target_amp = (Ix_target**2 + Iy_target**2)**0.5
Ix = np.where(I_src_amp > I_target_amp, Ix_src, Ix_target)
Iy = np.where(I_src_amp > I_target_amp, Iy_src, Iy_target)
Ixx, _ = utils.compute_gradient(Ix, forward=False)
_, Iyy = utils.compute_gradient(Iy, forward=False)
return Ixx + Iyy
elif mode == "alpha":
src_laplacian = utils.compute_laplacian(src)
target_laplacian = utils.compute_laplacian(target)
return alpha * src_laplacian + (1 - alpha) * target_laplacian
else:
raise ValueError(f"Gradient mixing mode '{mode}' not supported!")
#@profile
def poisson_blend_channel(self, src, target, gradient_mixing_mode, gradient_mixing_alpha):
mixed_gradients = self.compute_mixed_gradients(src, target, gradient_mixing_mode, gradient_mixing_alpha)
boundary_pixel_values = utils.get_masked_values(target, self.boundary_mask).flatten()
inner_gradient_values = utils.get_masked_values(mixed_gradients, self.inner_mask).flatten()
# Construct b
b = self.construct_b(inner_gradient_values, boundary_pixel_values)
# Solve Ax = b
if self.solver != "multigrid":
x = self.solver_func(self.A, b)
if isinstance(x, tuple): # solvers other than spsolve
x = x[0]
else:
# Use multigrid solver
ml = pyamg.ruge_stuben_solver(self.A)
x = ml.solve(b, tol=1e-10)
new_src = np.zeros(src.size)
new_src[self.mask_pos] = x
new_src = new_src.reshape(src.shape)
poisson_blended_img = utils.get_alpha_blended_img(new_src, target, self.mask)
poisson_blended_img = np.clip(poisson_blended_img, 0, 1)
return poisson_blended_img
#@profile
def poisson_blend_rgb_v2(self, gradient_mixing_mode, gradient_mixing_alpha):
self.C = self.construct_C_matrix()
b_full = []
for i in range(self.src_rgb.shape[-1]):
src = self.src_rgb[..., i]
target = self.target_rgb[..., i]
mixed_gradients = self.compute_mixed_gradients(src, target, gradient_mixing_mode, gradient_mixing_alpha)
boundary_pixel_values = utils.get_masked_values(target, self.boundary_mask).flatten()
inner_gradient_values = utils.get_masked_values(mixed_gradients, self.inner_mask).flatten()
b = self.construct_b(inner_gradient_values, boundary_pixel_values)
b_full.append(b)
b_full = np.concatenate(b_full)
x = self.solver(self.C, b_full)#[0]
x = x.reshape(3, -1).T
new_src = np.zeros((self.img_w * self.img_h, 3))
new_src[self.mask_pos, :] = x
new_src = new_src.reshape(self.src_rgb.shape)
poisson_blended_img = utils.get_alpha_blended_img(new_src, self.target_rgb, np.expand_dims(self.mask, -1))
poisson_blended_img = np.clip(poisson_blended_img, 0, 1)
return poisson_blended_img
#@profile
def poisson_blend_rgb(self, gradient_mixing_mode, gradient_mixing_alpha):
self.A = self.construct_A_matrix()
poisson_blended_img_rgb = []
for i in range(self.src_rgb.shape[-1]):
poisson_blended_img_rgb.append(
self.poisson_blend_channel(
self.src_rgb[..., i], self.target_rgb[..., i],
gradient_mixing_mode, gradient_mixing_alpha
)
)
return np.dstack(poisson_blended_img_rgb)
def poisson_blend_gray(self, gradient_mixing_mode, gradient_mixing_alpha):
self.A = self.construct_A_matrix()
src_gray = utils.rgb2gray(self.src_rgb)
target_gray = utils.rgb2gray(self.target_rgb)
return self.poisson_blend_channel(src_gray, target_gray, gradient_mixing_mode, gradient_mixing_alpha)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--data_dir", type=str, required=True, help="Folder of mask, source, and target image files.")
parser.add_argument("--scale", type=float, default=1.0, help="Scaling image height and width.")
parser.add_argument("--grayscale", action="store_true", help="Convert input to grayscale images.")
parser.add_argument("--solver", type=str, default="spsolve", help="Linear system solver.")
parser.add_argument("--gradient_mixing_mode", type=str, default="max", choices=["max", "alpha"], help="Gradient mixing modes.")
parser.add_argument("--gradient_mixing_alpha", type=float, default=1.0, help="Alpha value for gradient mixing. Mode 'max' does not depend on alpha.")
args = parser.parse_args()
cloner = PoissonSeamlessCloner(args.data_dir, args.solver, args.scale)
if args.grayscale:
img = cloner.poisson_blend_gray(args.gradient_mixing_mode, args.gradient_mixing_alpha)
else:
img = cloner.poisson_blend_rgb(args.gradient_mixing_mode, args.gradient_mixing_alpha)
img = (img * 255).astype(np.uint8)
Image.fromarray(img).save(os.path.join(args.data_dir, "result.png"))