-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAuditory_perception.c
79 lines (67 loc) · 2.98 KB
/
Auditory_perception.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "auditory_perception.h"
// Memory Management
int init_auditory_scene(AuditoryScene **scene) {
*scene = (AuditoryScene*)malloc(sizeof(AuditoryScene));
if (!*scene) {
fprintf(stderr, "Failed to allocate memory for auditory scene\n");
return EARS_MEMORY_ERROR;
}
(*scene)->num_perceptions = 0;
return EARS_SUCCESS;
}
void free_auditory_scene(AuditoryScene *scene) {
if (scene) {
free(scene);
}
}
// Processing and Perception
int process_audio_for_perception(AudioData *audio_data, AuditoryScene *scene, InnerEar *inner_ear) {
if (!audio_data || !scene || !inner_ear) {
fprintf(stderr, "Invalid input parameters\n");
return EARS_MEMORY_ERROR;
}
// Here you would integrate with machine learning models or pattern recognition algorithms
// For simplicity, let's simulate some basic perception:
// Example: Detecting a tone
double dominant_frequency = find_dominant_frequency(audio_data);
if (dominant_frequency > 0) {
snprintf(scene->perceptions[scene->num_perceptions].label, MAX_LABEL_LENGTH, "Tone at %.2f Hz", dominant_frequency);
scene->perceptions[scene->num_perceptions].confidence = 0.8; // Arbitrary confidence value
scene->num_perceptions++;
}
// Apply cochlear response simulation
simulate_cochlear_response(inner_ear, dominant_frequency);
// Simulate more complex perception like speech or music recognition here
return EARS_SUCCESS;
}
// This function would use machine learning to classify sounds
void classify_sound(AuditoryScene *scene) {
// Placeholder for actual classification logic
if (scene->num_perceptions < MAX_PERCEPTIONS) {
strcpy(scene->perceptions[scene->num_perceptions].label, "Classified as Music");
scene->perceptions[scene->num_perceptions].confidence = 0.75;
scene->num_perceptions++;
}
}
// This function would use voice recognition to identify speakers
void identify_speaker(AuditoryScene *scene) {
// Placeholder for actual speaker identification logic
if (scene->num_perceptions < MAX_PERCEPTIONS) {
strcpy(scene->perceptions[scene->num_perceptions].label, "Speaker: John Doe");
scene->perceptions[scene->num_perceptions].confidence = 0.9;
scene->num_perceptions++;
}
}
// This function would add context to the perception based on external data
void contextualize_sound(AuditoryScene *scene, const char *context) {
if (scene->num_perceptions < MAX_PERCEPTIONS) {
snprintf(scene->perceptions[scene->num_perceptions].label, MAX_LABEL_LENGTH, "Context: %s", context);
scene->perceptions[scene->num_perceptions].confidence = 1.0; // Context is assumed to be accurate
scene->num_perceptions++;
}
}
// Helper function, this would be implemented with signal processing techniques
double find_dominant_frequency(AudioData *audio_data) {
// Placeholder for actual frequency analysis
return 440.0; // Example: A4 note frequency
}