-
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathAuditory_perception_ears.c
100 lines (86 loc) · 3.68 KB
/
Auditory_perception_ears.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#include "auditory_perception.h"
// Assuming we need the EARS library for audio data handling
#include "ears.h"
// Memory Management
int init_auditory_scene(AuditoryScene **scene) {
*scene = (AuditoryScene*)malloc(sizeof(AuditoryScene));
if (!*scene) {
fprintf(stderr, "Failed to allocate memory for auditory scene\n");
return EARS_MEMORY_ERROR;
}
(*scene)->num_perceptions = 0;
return EARS_SUCCESS;
}
void free_auditory_scene(AuditoryScene *scene) {
if (scene) {
free(scene);
}
}
// Processing and Perception
int process_audio_for_perception(AudioData *audio_data, AuditoryScene *scene, InnerEar *inner_ear) {
if (!audio_data || !scene || !inner_ear) {
fprintf(stderr, "Invalid input parameters\n");
return EARS_MEMORY_ERROR;
}
// Perform Fourier Transform to analyze frequency content
if (perform_fourier_transform(audio_data) != EARS_SUCCESS) {
fprintf(stderr, "Failed to perform Fourier Transform\n");
return EARS_MEMORY_ERROR;
}
// Find the dominant frequency
double dominant_frequency = find_dominant_frequency(audio_data);
if (dominant_frequency > 0) {
snprintf(scene->perceptions[scene->num_perceptions].label, MAX_LABEL_LENGTH, "Tone at %.2f Hz", dominant_frequency);
scene->perceptions[scene->num_perceptions].confidence = 0.8; // Arbitrary confidence value
scene->num_perceptions++;
}
// Apply cochlear response simulation
simulate_cochlear_response(inner_ear, dominant_frequency);
// Here would be the integration with machine learning models or more complex analysis
// For now, let's use placeholder functions:
classify_sound(scene);
identify_speaker(scene);
// Add context based on some external data or scenario
contextualize_sound(scene, "In a quiet room");
return EARS_SUCCESS;
}
// Placeholder for actual frequency analysis
double find_dominant_frequency(AudioData *audio_data) {
// This is a very simplified approach. In real scenarios, this would involve
// finding the peak in the frequency spectrum.
double max_amplitude = 0.0;
double dominant_freq = 0.0;
for (int i = 0; i < FFT_SIZE / 2 + 1; i++) {
double current_amplitude = sqrt(audio_data->frequency_domain[i][0] * audio_data->frequency_domain[i][0] +
audio_data->frequency_domain[i][1] * audio_data->frequency_domain[i][1]);
if (current_amplitude > max_amplitude) {
max_amplitude = current_amplitude;
dominant_freq = (i * SAMPLING_RATE) / (double)FFT_SIZE;
}
}
return dominant_freq;
}
// Placeholder for actual sound classification
void classify_sound(AuditoryScene *scene) {
if (scene->num_perceptions < MAX_PERCEPTIONS) {
strcpy(scene->perceptions[scene->num_perceptions].label, "Classified as Music");
scene->perceptions[scene->num_perceptions].confidence = 0.75;
scene->num_perceptions++;
}
}
// Placeholder for actual speaker identification
void identify_speaker(AuditoryScene *scene) {
if (scene->num_perceptions < MAX_PERCEPTIONS) {
strcpy(scene->perceptions[scene->num_perceptions].label, "Speaker: John Doe");
scene->perceptions[scene->num_perceptions].confidence = 0.9;
scene->num_perceptions++;
}
}
// Add context to the auditory scene
void contextualize_sound(AuditoryScene *scene, const char *context) {
if (scene->num_perceptions < MAX_PERCEPTIONS) {
snprintf(scene->perceptions[scene->num_perceptions].label, MAX_LABEL_LENGTH, "Context: %s", context);
scene->perceptions[scene->num_perceptions].confidence = 1.0;
scene->num_perceptions++;
}
}