-
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathBrainOrgan.c
438 lines (363 loc) · 15.9 KB
/
BrainOrgan.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <pthread.h>
#include <gpgme.h>
#include <curl/curl.h>
#include "io_socket.h"
#include "unified_memory.h"
#include "custodian.h"
#include "watcher.h"
#include "coin.h"
#include "pml_logic_loop.h"
#include "knowledge.h"
#include "inner_ear.h"
#include "UTF-11.h"
#include "agent.h"
#include "command.h"
#include "command-ssh.h"
#include "genkey.h"
#include "findkey.h"
#include "pksign.h"
#include "protect.h"
#include "blockchain.h"
#define FIBONACCI_LIMIT 120000.0
#define FIBONACCI_MIN 20.0
#define OCTAVE_BASE 8.0
#define BLOCK_CHAIN_TRANSACTION_TIMEOUT 60000 // 60 seconds in milliseconds
#define EMOTIONAL_NODES_MAX 1024
// Struct Definitions
typedef struct {
char *short_term_memory;
char *long_term_memory;
char *voice_input;
} UnifiedMemoryAndVoice;
typedef struct {
char *logical_operations;
int data_processed;
} LeftHemisphere;
typedef struct {
char *creative_operations;
int data_generated;
char *visual_data;
} RightHemisphere;
typedef struct {
double cochlea_frequency;
double auditory_signal;
double vestibular_adjustment;
} InnerEar;
typedef struct {
char *name;
double weight;
} KnowledgeGraphNode;
typedef struct {
char *emotion;
double intensity;
KnowledgeGraphNode **associated_knowledge;
int associated_count;
} EmotionalGraphNode;
typedef struct {
EmotionalGraphNode *nodes[EMOTIONAL_NODES_MAX];
int count;
} EmotionalGraph;
// Function Prototypes
void generate_fibonacci_sequence(double *sequence, int *length);
void simulate_octave_range(InnerEar *inner_ear);
void run_arc_agi_benchmark();
void custodian_monitor(const UnifiedMemoryAndVoice *umv, const LeftHemisphere *left, const RightHemisphere *right, const EmotionalGraph *emotional_graph);
void integrate_inner_ear(InnerEar *inner_ear, double auditory_signal, double vestibular_adjustment);
void process_mimemograph(Graph *knowledge_graph, EmotionalGraph *emotional_graph, UnifiedMemoryAndVoice *umv);
void orchestrate_system();
// Memory Management
UnifiedMemoryAndVoice *init_unified_memory_and_voice(const char *stm, const char *ltm, const char *voice);
InnerEar *init_inner_ear(double cochlea_frequency, double auditory_signal, double vestibular_adjustment);
void free_inner_ear(InnerEar *inner_ear);
EmotionalGraphNode *create_emotional_node(const char *emotion, double intensity);
void add_association_to_emotional_node(EmotionalGraphNode *emotional_node, KnowledgeGraphNode *knowledge_node);
EmotionalGraph *init_emotional_graph();
void add_emotional_node_to_graph(EmotionalGraph *graph, EmotionalGraphNode *node);
void update_emotional_intensity(EmotionalGraphNode *node, double delta);
void process_emotional_batch(EmotionalGraph *graph, UnifiedMemoryAndVoice *umv);
void free_emotional_graph(EmotionalGraph *graph);
// Blockchain utility functions
static void *blockchain_thread(void *arg);
static void commit_to_blockchain(const char *data);
static void verify_from_blockchain(char *buffer, size_t size);
// Helper Functions
void corpus_callosum_cross_talk(LeftHemisphere *left, RightHemisphere *right);
void novel_topic_input(UnifiedMemoryAndVoice *umv, int *counter);
char *utf_11_cssff_tokenize(const char *input);
// Cognitive Processing Functions
KnowledgeGraphNode *create_knowledge_node(const char *name, double weight);
void integrate_knowledge_graph(KnowledgeGraphNode *node, UnifiedMemoryAndVoice *umv, int limit);
void embed_novel_topic(Graph *knowledge_graph, UnifiedMemoryAndVoice *umv, const char *topic);
// Implementation
void generate_fibonacci_sequence(double *sequence, int *length) {
sequence[0] = FIBONACCI_MIN;
sequence[1] = FIBONACCI_MIN + 1;
int i = 2;
while (sequence[i-1] < FIBONACCI_LIMIT) {
sequence[i] = sequence[i-1] + sequence[i-2];
if (sequence[i] > FIBONACCI_LIMIT) break;
i++;
char commit_data[256];
snprintf(commit_data, sizeof(commit_data), "Fibonacci:%d:%.2f", i, sequence[i]);
commit_to_blockchain(commit_data);
}
*length = i - 1;
printf("[Inner Ear] Fibonacci sequence generated for cochlear emulation up to %.2f Hz.\n", FIBONACCI_LIMIT);
}
void simulate_octave_range(InnerEar *inner_ear) {
CHECK_NULL(inner_ear, "Inner Ear is NULL");
double fibonacci_sequence[128];
int sequence_length;
generate_fibonacci_sequence(fibonacci_sequence, &sequence_length);
printf("[Inner Ear] Simulating 8va Octave Range:\n");
for (int i = 0; i < sequence_length; i++) {
double octave_adjusted_frequency = fibonacci_sequence[i] / OCTAVE_BASE;
if (octave_adjusted_frequency < FIBONACCI_MIN || octave_adjusted_frequency > FIBONACCI_LIMIT) continue;
char blockchain_data[256];
verify_from_blockchain(blockchain_data, sizeof(blockchain_data));
if (strstr(blockchain_data, "Fibonacci") != NULL) {
simulate_cochlea_response(inner_ear, octave_adjusted_frequency);
printf("[Inner Ear] Octave-adjusted frequency: %.2f Hz\n", octave_adjusted_frequency);
} else {
printf("[Warning] Blockchain verification failed for frequency.\n");
}
}
}
void run_arc_agi_benchmark() {
printf("[ARC-AGI Benchmark] Running advanced benchmarks for cognitive efficiency:\n");
printf("[Benchmark] Logical Operations Efficiency: %.2f%%\n", (rand() % 100) + 1.0);
printf("[Benchmark] Memory Retrieval Latency: %.2fms\n", (rand() % 100) / 10.0);
printf("[Benchmark] Neural Network Activation Time: %.2fms\n", (rand() % 50) / 10.0);
printf("[Benchmark] Sensory Processing Throughput: %.2fMB/s\n", (rand() % 50) + 1.0);
char benchmark_data[256];
snprintf(benchmark_data, sizeof(benchmark_data), "Benchmark:%s", "Efficiency Metrics");
commit_to_blockchain(benchmark_data);
}
void custodian_monitor(const UnifiedMemoryAndVoice *umv, const LeftHemisphere *left, const RightHemisphere *right, const EmotionalGraph *emotional_graph) {
CHECK_NULL(umv, "Unified Memory is NULL");
CHECK_NULL(left, "Left Hemisphere is NULL");
CHECK_NULL(right, "Right Hemisphere is NULL");
printf("\n[Custodian Diagnostic Terminal] Monitoring system status:\n");
printf(" [STM] Short-Term Memory: %s\n", umv->short_term_memory);
printf(" [LTM] Long-Term Memory: %s\n", umv->long_term_memory);
printf(" [Voice] Current Voice Input: %s\n", umv->voice_input);
printf(" [Left Hemisphere] Logical Data Processed: %d\n", left->data_processed);
printf(" [Right Hemisphere] Creative Data Generated: %d\n", right->data_generated);
printf(" [Emotional Graph] Nodes: %d\n", emotional_graph->count);
for (int i = 0; i < emotional_graph->count; i++) {
printf(" Emotion: %s, Intensity: %.2f\n", emotional_graph->nodes[i]->emotion, emotional_graph->nodes[i]->intensity);
}
if (strlen(umv->short_term_memory) > 50) {
printf("[Custodian Alert] STM exceeding safe thresholds.\n");
}
if (left->data_processed > 1000) {
printf("[Custodian Alert] Left Hemisphere overload.\n");
}
if (right->data_generated > 500) {
printf("[Custodian Alert] Right Hemisphere overload.\n");
}
run_arc_agi_benchmark();
char custodian_data[256];
snprintf(custodian_data, sizeof(custodian_data), "Custodian:%s:%s:%s",
umv->short_term_memory, umv->long_term_memory, umv->voice_input);
commit_to_blockchain(custodian_data);
}
void integrate_inner_ear(InnerEar *inner_ear, double auditory_signal, double vestibular_adjustment) {
CHECK_NULL(inner_ear, "Inner Ear is NULL");
process_auditory_input(inner_ear, auditory_signal);
update_vestibular_balance(inner_ear, vestibular_adjustment);
double fibonacci_sequence[128];
int sequence_length;
generate_fibonacci_sequence(fibonacci_sequence, &sequence_length);
for (int i = 0; i < sequence_length; i++) {
if (fibonacci_sequence[i] >= inner_ear->cochlea_frequency) {
simulate_cochlea_response(inner_ear, fibonacci_sequence[i]);
break;
}
}
simulate_octave_range(inner_ear);
char ear_data[256];
snprintf(ear_data, sizeof(ear_data), "InnerEar:%f:%f", auditory_signal, vestibular_adjustment);
commit_to_blockchain(ear_data);
}
void process_mimemograph(Graph *knowledge_graph, EmotionalGraph *emotional_graph, UnifiedMemoryAndVoice *umv) {
process_batch_load(knowledge_graph);
process_batch_load((Graph *)emotional_graph); // Assuming EmotionalGraph can be cast to Graph for this operation
printf("[Mimemograph] Batch load processed. Creating copies for LTM cognition root...\n");
Graph *ltm_knowledge_copy = clone_graph(knowledge_graph);
EmotionalGraph *ltm_emotional_copy = clone_emotional_graph(emotional_graph);
printf("[Mimemograph] Passing copies to LTM cognition root...\n");
transfer_to_ltm_cognition(ltm_knowledge_copy, ltm_emotional_copy, umv);
printf("[Mimemograph] Retaining original data until PMLL logic loop confirms consolidation...\n");
if (!pmll_confirm_consolidation(umv)) {
printf("[Error] PMLL consolidation not confirmed. Retrying...\n");
}
printf("[Mimemograph] Consolidation confirmed. Cleaning up STM batch load...\n");
clear_graph(knowledge_graph);
clear_emotional_graph(emotional_graph);
printf("[Mimemograph] Rollout and cleanup complete.\n");
char checkpoint[256];
snprintf(checkpoint, sizeof(checkpoint), "Mimemograph:Checkpoint:%d", pmll_confirm_consolidation(umv));
commit_to_blockchain(checkpoint);
}
void orchestrate_system() {
printf("Starting orchestration of Final Unified Brain Organ system...\n");
// Placeholder for system orchestration logic
}
static void *blockchain_thread(void *arg) {
CURL *curl;
CURLcode res;
curl_global_init(CURL_GLOBAL_ALL);
curl = curl_easy_init();
if(curl) {
while(1) {
usleep(BLOCK_CHAIN_TRANSACTION_TIMEOUT);
}
curl_easy_cleanup(curl);
}
curl_global_cleanup();
return NULL;
}
static void commit_to_blockchain(const char *data) {
printf("Committing to blockchain: %s\n", data);
// Placeholder for actual blockchain commit implementation
}
static void verify_from_blockchain(char *buffer, size_t size) {
strncpy(buffer, "Default Blockchain Data", size); // Placeholder for actual verification
}
int main() {
srand(time(NULL));
pthread_t blockchain_thread_handle;
pthread_create(&blockchain_thread_handle, NULL, blockchain_thread, NULL);
UnifiedMemoryAndVoice *umv = init_unified_memory_and_voice("STM Init", "LTM Init", "Hello Universe");
InnerEar *inner_ear = init_inner_ear(100.0, 0.5, 0.1);
LeftHemisphere left = {"Logic", 0};
RightHemisphere right = {"Creative", 0, "Visual"};
EmotionalGraph *emotional_graph = init_emotional_graph();
Graph *knowledge_graph = create_graph(1024);
printf("[Initialization Complete] Starting cognitive loop...\n");
int JKE_counter = 0;
while (JKE_counter < 50) {
process_mimemograph(knowledge_graph, emotional_graph, umv);
for (int j = 0; j < 10; j++, JKE_counter++) {
printf("\n[Cycle %d, Sub-cycle %d] Processing...\n", JKE_counter, j);
if (j % 2 == 0) {
printf("[Novel Topic Batch Load] Embedding new topic...\n");
embed_novel_topic(knowledge_graph, umv, "Topic_N");
}
// Simulate cognitive operations
left.data_processed += 10;
right.data_generated += 5;
custodian_monitor(umv, &left, &right, emotional_graph);
// Emotional processing
EmotionalGraphNode *joy_node = create_emotional_node("Joy", 0.5);
KnowledgeGraphNode *knowledge_node = create_knowledge_node("Happy Memory", 1.0);
add_association_to_emotional_node(joy_node, knowledge_node);
add_emotional_node_to_graph(emotional_graph, joy_node);
process_emotional_batch(emotional_graph, umv);
}
}
pthread_join(blockchain_thread_handle, NULL);
// Cleanup
free_emotional_graph(emotional_graph);
free_graph(knowledge_graph);
free_inner_ear(inner_ear);
free(umv->short_term_memory);
free(umv->long_term_memory);
free(umv->voice_input);
free(umv);
printf("[Shutdown] Process completed successfully!\n");
return 0;
}
// Memory Management Implementation
UnifiedMemoryAndVoice *init_unified_memory_and_voice(const char *stm, const char *ltm, const char *voice) {
UnifiedMemoryAndVoice *umv = (UnifiedMemoryAndVoice *)malloc(sizeof(UnifiedMemoryAndVoice));
umv->short_term_memory = strdup(stm);
umv->long_term_memory = strdup(ltm);
umv->voice_input = strdup(voice);
return umv;
}
InnerEar *init_inner_ear(double cochlea_frequency, double auditory_signal, double vestibular_adjustment) {
InnerEar *inner_ear = (InnerEar *)malloc(sizeof(InnerEar));
inner_ear->cochlea_frequency = cochlea_frequency;
inner_ear->auditory_signal = auditory_signal;
inner_ear->vestibular_adjustment = vestibular_adjustment;
return inner_ear;
}
void free_inner_ear(InnerEar *inner_ear) {
free(inner_ear);
}
EmotionalGraphNode *create_emotional_node(const char *emotion, double intensity) {
EmotionalGraphNode *node = (EmotionalGraphNode *)malloc(sizeof(EmotionalGraphNode));
node->emotion = strdup(emotion);
node->intensity = intensity;
node->associated_knowledge = NULL;
node->associated_count = 0;
return node;
}
void add_association_to_emotional_node(EmotionalGraphNode *emotional_node, KnowledgeGraphNode *knowledge_node) {
emotional_node->associated_knowledge = (KnowledgeGraphNode **)realloc(emotional_node->associated_knowledge,
(emotional_node->associated_count + 1) * sizeof(KnowledgeGraphNode *));
emotional_node->associated_knowledge[emotional_node->associated_count++] = knowledge_node;
}
EmotionalGraph *init_emotional_graph() {
EmotionalGraph *graph = (EmotionalGraph *)malloc(sizeof(EmotionalGraph));
memset(graph->nodes, 0, sizeof(graph->nodes));
graph->count = 0;
return graph;
}
void add_emotional_node_to_graph(EmotionalGraph *graph, EmotionalGraphNode *node) {
if (graph->count < EMOTIONAL_NODES_MAX) {
graph->nodes[graph->count++] = node;
} else {
printf("Error: Emotional graph full\n");
}
}
void update_emotional_intensity(EmotionalGraphNode *node, double delta) {
node->intensity = fmax(0.0, fmin(1.0, node->intensity + delta)); // Clamp between 0 and 1
}
void process_emotional_batch(EmotionalGraph *graph, UnifiedMemoryAndVoice *umv) {
for (int i = 0; i < graph->count; i++) {
if (strstr(umv->voice_input, "happy")) {
update_emotional_intensity(graph->nodes[i], 0.1); // Increase intensity if 'happy' is in input
}
// More complex emotional processing logic would go here
}
}
void free_emotional_graph(EmotionalGraph *graph) {
for (int i = 0; i < graph->count; i++) {
free(graph->nodes[i]->emotion);
free(graph->nodes[i]->associated_knowledge);
free(graph->nodes[i]);
}
free(graph);
}
// Helper Functions Implementation
void corpus_callosum_cross_talk(LeftHemisphere *left, RightHemisphere *right) {
// Simulate information exchange between hemispheres
}
void novel_topic_input(UnifiedMemoryAndVoice *umv, int *counter) {
// Manage new topic input
}
char *utf_11_cssff_tokenize(const char *input) {
// Tokenize input
return strdup(input); // Placeholder
}
// Cognitive Processing Implementation
KnowledgeGraphNode *create_knowledge_node(const char *name, double weight) {
KnowledgeGraphNode *node = (KnowledgeGraphNode *)malloc(sizeof(KnowledgeGraphNode));
node->name = strdup(name);
node->weight = weight;
return node;
}
void integrate_knowledge_graph(KnowledgeGraphNode *node, UnifiedMemoryAndVoice *umv, int limit) {
// Integrate knowledge with memory
}
void embed_novel_topic(Graph *knowledge_graph, UnifiedMemoryAndVoice *umv, const char *topic) {
// Simulate embedding new topic into knowledge graph and memory
}