forked from gabriel301/DiscreteOptimizationCoursera
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
91 lines (71 loc) · 3.8 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/python
# -*- coding: utf-8 -*-
from collections import namedtuple
from Util import Util
from MIP import MIP
from ParametersConfiguration import ParametersConfiguration
from EnumSettings import Strategy,ImprovementType,SolvingParadigm,InitialSolutionFunction
from Preprocessing import Preprocessing
from Forest import Forest
from LNS import LNS
import time
import datetime
import math
Point = namedtuple("Point", ['x', 'y'])
Facility = namedtuple("Facility", ['index', 'setup_cost', 'capacity', 'location','distance_quantiles','cost_per_capacity','frequency'])
Customer = namedtuple("Customer", ['index', 'demand', 'location'])
def solve_it(input_data):
start = time.time()
print("Start DateTime: {}".format(datetime.datetime.now()))
# parse the input
lines = input_data.split('\n')
parts = lines[0].split()
facility_count = int(parts[0])
customer_count = int(parts[1])
totalCapacity = 0
totalDemand = 0
facilities = []
for i in range(1, facility_count+1):
parts = lines[i].split()
facilities.append(Facility(i-1, float(parts[0]), int(parts[1]), Point(float(parts[2]), float(parts[3])),[],Util.truncate(float(parts[0])/int(parts[1]),3),1.0))
totalCapacity = totalCapacity + float(parts[0])
customers = []
for i in range(facility_count+1, facility_count+1+customer_count):
parts = lines[i].split()
customers.append(Customer(i-1-facility_count, int(parts[0]), Point(float(parts[1]), float(parts[2]))))
totalDemand = totalDemand + int(parts[0])
#print("TOTAL CAPACITY: %s || TOTAL DEMAND: %s"%(totalCapacity,totalDemand))
paramsConfig = ParametersConfiguration(facility_count,facility_count*customer_count)
params = paramsConfig.getParameters()
print("============================================================================================================================================================")
print("Instace Size: %s || Strategy: %s || Paradigm: %s || Improvement Type: %s" % (paramsConfig.instanceSize,params["strategy"],params["paradigm"],params["improvementType"]))
print("============================================================================================================================================================")
if(params["paradigm"] == SolvingParadigm.MIP):
instance = MIP(facilities,customers,"Instance_%s_%s" %(facility_count,customer_count),params["mipSolver"])
obj,assignments,_ = instance.optimize(params["mipTimeLimit"])
output_data = '%.2f' % obj + ' ' + str(1) + '\n'
output_data += ' '.join(map(str,Util.formatSolutionFromMIP(assignments)))
elif (params["paradigm"] == SolvingParadigm.Hybrid):
search = LNS(facilities,customers,params)
obj,assignments = search.optimize()
output_data = '%.2f' % obj + ' ' + str(0) + '\n'
output_data += ' '.join(map(str,assignments))
elif (params["paradigm"] == SolvingParadigm.Heuristic):
obj,assignments = Preprocessing.getTrivialInitialSolution(facilities,customers)
output_data = '%.2f' % obj + ' ' + str(0) + '\n'
output_data += ' '.join(map(str,assignments))
end = time.time()
hours, minutes, seconds = Util.getIntervalDuration(start,end)
print("End DateTime: {}".format(datetime.datetime.now()))
print("EXECUTION TIME: {:0>2}:{:0>2}:{:05.2f}s".format(int(hours),int(minutes),seconds))
return output_data
import sys
if __name__ == '__main__':
import sys
if len(sys.argv) > 1:
file_location = sys.argv[1].strip()
with open(file_location, 'r') as input_data_file:
input_data = input_data_file.read()
print(solve_it(input_data))
else:
print('This test requires an input file. Please select one from the data directory. (i.e. python solver.py ./data/fl_16_2)')