forked from AIS-Bonn/temporal_latticenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecordPLYs.py
158 lines (115 loc) · 5.44 KB
/
RecordPLYs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#import faulthandler; faulthandler.enable()
import torch
import os
import time
print(time.asctime())
from cfgParser import *
import sys
import os
try:
import torch
except ImportError:
pass
from easypbr import *
from tqdm import tqdm
from easypbr import *
from os import listdir
from os.path import isfile, join
import natsort
from dataloader.kitti_dataloader import *
def load_pred_label_SP(sequence, index, dir = "/workspace/Data/SemanticKitti/spsequencenet_predictions"):
filename = os.path.join(dir,'sequences_prob', '{:02d}'.format(sequence), 'predictions', '{:06d}.label'.format(index))
with open(filename, 'r') as file:
labels = file.read().split('\n')
return np.array(labels[0:-1]).astype('int64')
def load_pred_label(sequence, index, dir = "/workspace/temporal_latticenet/predictions_validation/gru_gru_aflow_gru"):
filename = os.path.join(dir,'sequences', '{:02d}'.format(sequence), 'predictions', '{:06d}.label'.format(index))
with open(filename, 'r') as file:
labels = file.read().split('\n')
return np.array(labels[0:-1]).astype('int64')
def visMultipleDatasetPred(myview, label_mngr, pic_folder = "./recordings"):
base_path = "/workspace/temporal_latticenet/predictions_validation"
extras = ["gru_gru_aflow_gru"]
tmp = "sequences/08/predictions/"
directories = []
for extra in extras:
directories.append(os.path.join(base_path, extra))
config_file="/workspace/temporal_latticenet/seq_config/lnn_eval_semantic_kitti.cfg"
print(config_file)
config_parser = cfgParser(config_file)
dataset = SemanticKittiDataset(split = "valid", config_parser = config_parser, sequence_learning = True)
# the visualizations in the paper are sequence 8 with clouds 998, 3872 and 30
#205#241#3872#0#30#998#240#2815
valid_border=30
valid_sampler = list(range(len(dataset)))[valid_border:] if valid_border is not None else None
dataloader = torch.utils.data.DataLoader(dataset, num_workers = 8, batch_size=1, shuffle = False, sampler = valid_sampler)
myview.m_camera.from_string("9.24242 6.11435 -7.09283 0.0925219 0.890751 0.210117 -0.392239 9.26866 6.09659 -7.06882 60 0.3 6013.13")
loader_iter = dataloader.__iter__()
mymesh = Mesh()
mymesh.m_label_mngr=label_mngr
pbar = tqdm(total=len(dataloader.dataset))
for batch_idx, (positions_seq, values_seq, target_seq, path_seq,_) in enumerate(loader_iter):
pbar.update(1)
path = path_seq[-1][0].split("/")
gru_gru_cli_gru = load_pred_label(int(path[-3]), int(path[-1][0:-4]), directories[0])
spsequencenet = load_pred_label_SP(int(path[-3]), int(path[-1][0:-4]))
gT = target_seq[-1].squeeze(0).clone().numpy()
mymesh_minus_0 = create_cloud(positions_seq[-1].squeeze(0), target_seq[-1].squeeze(0), "", label_mngr)
#mymesh_minus_0.m_vis.set_color_semanticgt()
mymesh_minus_0.m_vis.m_solid_color = [0.5, 0.5, 0.5]
mymesh_minus_0.m_vis.set_color_solid()
mymesh_minus_0.m_vis.m_point_size=5.0
mymesh_minus_0.m_vis.m_show_points=True
Scene.show(mymesh_minus_0,"mesh")
mymesh_minus_1 = create_cloud(positions_seq[-2].squeeze(0), target_seq[-2].squeeze(0), "", label_mngr)
#mymesh_minus_1.m_vis.set_color_semanticgt()
mymesh_minus_1.m_vis.m_solid_color = [0.5, 0.5, 0.5]
mymesh_minus_1.m_vis.set_color_solid()
mymesh_minus_1.m_vis.m_point_size=5.0
mymesh_minus_1.m_vis.m_show_points=True
Scene.show(mymesh_minus_1,"mesh-1")
mymesh_minus_2 = create_cloud(positions_seq[-3].squeeze(0), target_seq[-3].squeeze(0), "", label_mngr)
#mymesh_minus_2.m_vis.set_color_semanticgt()
mymesh_minus_2.m_vis.m_solid_color = [0.5, 0.5, 0.5]
mymesh_minus_2.m_vis.set_color_solid()
mymesh_minus_2.m_vis.m_point_size=5.0
mymesh_minus_2.m_vis.m_show_points=True
Scene.show(mymesh_minus_2,"mesh-2")
mymesh = mymesh.clone()
mymesh.m_label_mngr=label_mngr
mymesh.V = positions_seq[-1].squeeze(0).clone()#[gT == 21]
mymesh.L_pred = torch.tensor(gru_gru_cli_gru)#[gT == 21]
mymesh.L_gt = target_seq[-1].squeeze(0).clone()#[gT == 21]
mymesh.m_vis.m_point_size=14.0#8.0
mymesh.m_vis.m_show_points=False
mymesh.m_vis.set_color_semanticpred()
Scene.show(mymesh,"gru_gru_cli_gru")
mymesh5 = mymesh.clone()
mymesh5.m_label_mngr=label_mngr
mymesh5.m_vis.m_show_points=True
mymesh5.L_pred = torch.tensor(spsequencenet)#[gT == 21]
Scene.show(mymesh5,"spsequencenet")
mymesh3 = mymesh.clone()
mymesh3.m_label_mngr=label_mngr
mymesh3.m_vis.m_show_points=True
mymesh3.m_vis.set_color_semanticgt()
Scene.show(mymesh3,"gT")
while True:
myview.update()
if myview.m_new_cloud:
#recorder.record(str(batch_idx)+".png", "./recordings/")
myview.m_new_cloud = False
break
if __name__ == "__main__":
config_file="/workspace/temporal_latticenet/seq_config/lnn_eval_semantic_kitti.cfg"
config_parser = cfgParser(config_file)
label_mngr_params = config_parser.get_label_mngr_vars()
m_ignore_index = label_mngr_params["unlabeled_idx"]
labels_file=str(label_mngr_params["labels_file"])
colorscheme_file=str(label_mngr_params["color_scheme_file"])
frequency_file=str(label_mngr_params["frequency_file"])
label_mngr=LabelMngr(labels_file, colorscheme_file, frequency_file, m_ignore_index )
myview=Viewer.create(config_file) #first because it needs to init context
recorder=myview.m_recorder
Scene.set_floor_visible(False)
visMultipleDatasetPred(myview, label_mngr)