-
Notifications
You must be signed in to change notification settings - Fork 0
/
BW_vode.py
192 lines (153 loc) · 5.37 KB
/
BW_vode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import numpy as np
import scipy as sp
import scipy.stats as ss
import pylab as plt
from scipy.integrate import ode
import time as TIME
import math
import time as TIME
'''
Simulate network of Buzsaki-Wang neurons using scipy implementation of VODE
Neurons 0:Ne are excitatory, Ne:N are inhibitory
VODE requires a flat array, so initial values are 4*N long
RHS reshapes this vector, computes derivatives, reshapes it again, and returns it to VODE
'''
#for now just detect zero crossings; implement shmitt trigger later
def basic_spike_detector(V):
spikes = []
for i in range(len(V)):
if V[i] >= 0:
if V[i-1] < 0:
spikes.append(i)
return np.array(spikes)
#Right hand side function that plays nice with odeint
def BW_RHS_ode_V(t, stvars, args):
stvars = stvars.reshape(4, args[2])
#Sodium
bam = -0.1*(stvars[0] + 35.)
a_m = bam/(np.exp(bam)-1.)
b_m = 4.*np.exp(-(stvars[0] + 60.)/18.)
m_inf = a_m/(a_m + b_m)
a_h = 0.07*np.exp(-(stvars[0] + 58.)/20.)
b_h = 1./(1. + np.exp(-0.1*(stvars[0] + 28.)))
#Potassium
ban = stvars[0] + 34.
a_n = -0.01*ban/(np.exp(-0.1*ban) - 1.)
b_n = 0.125*np.exp(-(stvars[0] + 44.)/80.)
#Synapse
fvp = 1./(1. + sp.exp(-stvars[0,:]/2.))
I_syn = np.inner(args[1], stvars[3,:]) * (stvars[0,:] - E_syn)
#Currents
I_Na = 35. * (m_inf**3.) * stvars[1] * (stvars[0] - 55.)
I_K = 9. * (stvars[2]**4.) * (stvars[0] + 90.)
I_L = 0.1*(stvars[0] + 65.)
#derivatives
dVdt = args[0] + I_syn - I_Na - I_K - I_L
dhdt = 5. * (a_h*(1. - stvars[1]) - (b_h*stvars[1]))
dndt = 5. * (a_n*(1. - stvars[2]) - (b_n*stvars[2]))
dsdt = 12.*fvp*(1.-stvars[3,:]) - (0.1*stvars[3,:]) #outgoing synapse
return np.concatenate([dVdt, dhdt, dndt, dsdt])
def von_mises_dist(x, k, mu, N):
a = sp.exp(k*np.cos(x-mu))/(N*sp.i0(k))
return a
def weights(Ne,Ni,kee,kei,kie_L,kii,Aee,Aei,Aie_L,Aii,pee,pei,pie,pii):
wee = np.zeros((Ne,Ne))
wei = np.zeros((Ne,Ni))
wie = np.zeros((Ni,Ne))
wii = np.zeros((Ni,Ni))
we = 2*np.arange(Ne)*np.pi/Ne
wi = 2*np.arange(Ni)*np.pi/Ni
for i in range(Ne):
wee[i,:]=Aee*np.roll(von_mises_dist(we, kee, 0, Ne), i)
wei[i,:]=Aei*np.roll(von_mises_dist(wi, kei, 0, Ni),int(round((Ni*i)/Ne))) #\
for i in range(Ni):
wie[i,:]=Aie_L*np.roll(von_mises_dist(we, kie_L, 0, Ne),int(round((Ne*i)/Ni)))# + Aie_D*circshift(von_mises_dist(we, kie_D, pi, Ne),div(Ne*i,Ni)-1)
wii[i,:]=Aii*np.roll(von_mises_dist(wi, kii, 0, Ni),i)
wee = wee*(np.random.uniform(0, 1, (Ne,Ne))<pee)
wei = wei*(np.random.uniform(0, 1, (Ne,Ni))<pei)
wie = wie*(np.random.uniform(0, 1, (Ni,Ne))<pie)
wii = wii*(np.random.uniform(0, 1, (Ni,Ni))<pii)
return wee, -wei, wie, -wii
#################### PARAMETERS ####################
Ne = 400
Ni = 100
N = Ne+Ni
Aee = 3.
Aei = 10.
Aie = 20.
Aii = 5.
kee = 2.
kei = .3
kie = .3
kii = .3
stim = 1.
p = .2
h = 0.01
#################### MATRIX, I_APP, IV, TIME ####################
wee, wei, wie, wii = weights(Ne, Ni, kee, kei, kie, kii, Aee, Aei, Aie, Aii, p, p, p, p)
W = np.zeros((N,N))
W[:Ne, :Ne] = wee
W[:Ne, Ne:] = wei
W[Ne:, :Ne] = wie
W[Ne:, Ne:] = wii
InitialValues = np.zeros(4*N) #4 state variables include voltage, sodium, potassium, and synapse
InitialValues[:N] = np.random.uniform(-70, -50, N) #random initial conditions for voltage
InitialValues[N:3*N] = 1. #sodium and potassium start at this value
E_syn = np.zeros(N)
E_syn[Ne:] = -75. #inhibitory synapses have a reversal in the driving force
#Drive select neurons
I_app = np.zeros(Ne)
FPe = round(Ne/5.)
P1s = round((Ne/4.)-FPe)
P1e = round((Ne/4.)+FPe)
P2s = round((3.*Ne/4.)-FPe)
P2e = round((3.*Ne/4.)+FPe)
I_app[P1s:P1e] = stim
I_app[P2s:P2e] = stim
I_app = np.concatenate([I_app, np.zeros(Ni)])
IV = InitialValues
runtime = 100. #ms
h = 0.01
t = np.linspace(0, runtime, runtime/h)
#################### S0IMULATE ####################
args = [I_app, W, N]
v = np.zeros((N*4, len(t)+1))
r = ode(BW_RHS_ode_V).set_integrator('vode', method='bdf')
r.set_initial_value(IV).set_f_params(args)
c=0
start_time = TIME.time()
while r.successful() and r.t < runtime:
#print r.integrate(r.t + h)
v[:,c] = r.integrate(r.t + h)
c+=1
stop_time = TIME.time()
print "network simulation time: ", stop_time - start_time
fig, (a0, a1) = plt.subplots(2,1, figsize = (24,18))
for i in range(N):
spikes = basic_spike_detector(v[i,:])
if i <= Ne:
a0.plot(spikes, np.zeros(len(spikes)) + i, "g.")
else:
a1.plot(spikes, np.zeros(len(spikes)) + i - Ne, "b.")
n0 = N/4
a0.set_title("Raster Plot of Network", fontsize = 54)
a0.tick_params(labelsize = 24)
a0.set_ylabel("Excitatory Neuron #", fontsize = 36)
a0.set_yticks([Ne/4., Ne/2., Ne*.75, Ne])
a1.tick_params(labelsize = 24)
a1.set_ylabel("Inhibitory Neuron #", fontsize = 36)
a1.set_yticks([Ni/4., Ni/2., Ni*.75, Ni])
a1.set_xlabel("Time (" + str(h) + " ms)", fontsize = 48)
fig2, ax = plt.subplots(4,1)
ax[0].set_title("State Variables for Single Neuron", fontsize = 54)
ax[0].plot(v[n0,:])
ax[0].set_ylabel("Voltage (mV)", fontsize = 24)
ax[1].plot(v[N+n0,:])
ax[1].set_ylabel("Sodium Activation", fontsize = 24)
ax[2].plot(v[n0 + (N*2),:])
ax[2].set_ylabel("Potassium Activation", fontsize = 24)
ax[3].plot(v[n0 + (N*3),:])
ax[3].set_ylabel("Synapse Activation", fontsize = 24)
ax[3].set_xlabel("Time (" + str(h) + " ms)", fontsize = 48)
plt.show()
#