-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrag_engine.py
138 lines (121 loc) · 5.34 KB
/
rag_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os, tempfile
import pinecone
from pathlib import Path
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain import OpenAI
from langchain.llms.openai import OpenAIChat
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma, Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
import streamlit as st
TMP_DIR = Path(__file__).resolve().parent.joinpath('data', 'tmp')
LOCAL_VECTOR_STORE_DIR = Path(__file__).resolve().parent.joinpath('data', 'vector_store')
st.set_page_config(page_title="RAG")
st.title("Retrieval Augmented Generation Engine")
def load_documents():
loader = DirectoryLoader(TMP_DIR.as_posix(), glob='**/*.pdf')
documents = loader.load()
return documents
def split_documents(documents):
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
return texts
def embeddings_on_local_vectordb(texts):
vectordb = Chroma.from_documents(texts, embedding=OpenAIEmbeddings(),
persist_directory=LOCAL_VECTOR_STORE_DIR.as_posix())
vectordb.persist()
retriever = vectordb.as_retriever(search_kwargs={'k': 7})
return retriever
def embeddings_on_pinecone(texts):
pinecone.init(api_key=st.session_state.pinecone_api_key, environment=st.session_state.pinecone_env)
embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.openai_api_key)
vectordb = Pinecone.from_documents(texts, embeddings, index_name=st.session_state.pinecone_index)
retriever = vectordb.as_retriever()
return retriever
def query_llm(retriever, query):
qa_chain = ConversationalRetrievalChain.from_llm(
llm=OpenAIChat(openai_api_key=st.session_state.openai_api_key),
retriever=retriever,
return_source_documents=True,
)
result = qa_chain({'question': query, 'chat_history': st.session_state.messages})
result = result['answer']
st.session_state.messages.append((query, result))
return result
def input_fields():
#
with st.sidebar:
#
if "openai_api_key" in st.secrets:
st.session_state.openai_api_key = st.secrets.openai_api_key
else:
st.session_state.openai_api_key = st.text_input("OpenAI API key", type="password")
#
if "pinecone_api_key" in st.secrets:
st.session_state.pinecone_api_key = st.secrets.pinecone_api_key
else:
st.session_state.pinecone_api_key = st.text_input("Pinecone API key", type="password")
#
if "pinecone_env" in st.secrets:
st.session_state.pinecone_env = st.secrets.pinecone_env
else:
st.session_state.pinecone_env = st.text_input("Pinecone environment")
#
if "pinecone_index" in st.secrets:
st.session_state.pinecone_index = st.secrets.pinecone_index
else:
st.session_state.pinecone_index = st.text_input("Pinecone index name")
#
st.session_state.pinecone_db = st.toggle('Use Pinecone Vector DB')
#
st.session_state.source_docs = st.file_uploader(label="Upload Documents", type="pdf", accept_multiple_files=True)
#
def process_documents():
if not st.session_state.openai_api_key or not st.session_state.pinecone_api_key or not st.session_state.pinecone_env or not st.session_state.pinecone_index or not st.session_state.source_docs:
st.warning(f"Please upload the documents and provide the missing fields.")
else:
try:
for source_doc in st.session_state.source_docs:
#
with tempfile.NamedTemporaryFile(delete=False, dir=TMP_DIR.as_posix(), suffix='.pdf') as tmp_file:
tmp_file.write(source_doc.read())
#
documents = load_documents()
#
for _file in TMP_DIR.iterdir():
temp_file = TMP_DIR.joinpath(_file)
temp_file.unlink()
#
texts = split_documents(documents)
#
if not st.session_state.pinecone_db:
st.session_state.retriever = embeddings_on_local_vectordb(texts)
else:
st.session_state.retriever = embeddings_on_pinecone(texts)
except Exception as e:
st.error(f"An error occurred: {e}")
def boot():
#
input_fields()
#
st.button("Submit Documents", on_click=process_documents)
#
if "messages" not in st.session_state:
st.session_state.messages = []
#
for message in st.session_state.messages:
st.chat_message('human').write(message[0])
st.chat_message('ai').write(message[1])
#
if query := st.chat_input():
st.chat_message("human").write(query)
response = query_llm(st.session_state.retriever, query)
st.chat_message("ai").write(response)
if __name__ == '__main__':
#
boot()