-
Notifications
You must be signed in to change notification settings - Fork 3
/
sampleresponse
1156 lines (1097 loc) · 106 KB
/
sampleresponse
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: seq:1,2,5,14,42
Showing 1-56 of 56
%I A000108 M1459 N0577
%S A000108 1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,
%T A000108 9694845,35357670,129644790,477638700,1767263190,6564120420,
%U A000108 24466267020,91482563640,343059613650,1289904147324,4861946401452,18367353072152,69533550916004,263747951750360,1002242216651368,3814986502092304
%N A000108 Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). Also called Segner numbers.
%C A000108 The solution to Schroeder's first problem. A very large number of combinatorial interpretations are known - see references, esp. Stanley, Enumerative Combinatorics, Volume 2.
%C A000108 Number of ways to insert n pairs of parentheses in a word of n+1 letters. E.g. for n=3 there are 5 ways: ((ab)(cd)), (((ab)c)d), ((a(bc))d), (a((bc)d)), (a(b(cd))).
%C A000108 Consider all the binomial(2n,n) paths on squared paper that (i) start at (0, 0), (ii) end at (2n, 0) and (iii) at each step, either make a (+1,+1) step or a (+1,-1) step. Then the number of such paths which never go never below the x-axis (Dyck paths) is C(n) [Chung-Feller]
%C A000108 Number of noncrossing partitions of the n-set. For example, of the 15 set partitions of the 4-set, only [{13},{24}] is crossing, so there are a(4)=14 noncrossing partitions of 4 elements. [Joerg Arndt, Jul 11 2011]
%C A000108 a(n-1) is the number of ways of expressing an n-cycle in the symmetric group S_n as a product of n-1 transpositions (u_1,v_1)*(u_2,v_2)*...*(u_{n-1},v_{n-1}) where uk<=uj and vk<=vj for k<j; see example. If the condition is dropped one obtains A000272. [Joerg Arndt and Greg Stevenson, Jul 11 2011]
%C A000108 a(n) is the number of ordered rooted trees with n nodes, not including the root. See the Conway-Guy reference where these rooted ordered trees are called plane bushes. See also the Bergeron et al. reference, Example 4, p. 167. W. Lang Aug 07 2007.
%C A000108 Shifts one place left when convolved with itself.
%C A000108 For n >= 1 a(n) is also the number of rooted bicolored unicellular maps of genus 0 on n edges. - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 15 2001
%C A000108 Ways of joining 2n points on a circle to form n nonintersecting chords. (If no such restriction imposed, then ways of forming n chords is given by (2n-1)!!=(2n)!/n!2^n=A001147(n).)
%C A000108 Arises in Schubert calculus - see Sottile reference.
%C A000108 Inverse Euler transform of sequence is A022553.
%C A000108 With interpolated zeros, the inverse binomial transform of the Motzkin numbers A001006. - Paul Barry, Jul 18 2003
%C A000108 The Hankel transforms of this sequence or of this sequence with the first term omitted give A000012 = 1, 1, 1, 1, 1, 1, ...; example : Det([1, 1, 2, 5; 1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132]) = 1 and Det([1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132; 14, 42, 132, 429]) = 1 . - DELEHAM Philippe, Mar 04 2004
%C A000108 c(n) = C(2*n-2,n-1)/n = (1/n!) * [ n^(n-1) + { C(n-2,1) +C(n-2,2) }*n^(n-2) + { 2*C(n-3,1) +7*C(n-3,2) +8*C(n-3,3) +3*C(n-3,4) }*n^(n-3) + { 6*C(n-4,1) +38*C(n-4,2) +93*C(n-4,3) +111*C(n-4,4) +65*C(n-4,5) +15*C(n-4,6) }*n^(n-4) + ..... ]. - Andre F. Labossiere (boronali(AT)laposte.net), Nov 10 2004
%C A000108 Sum_{n=0..infinity} 1/a(n) = 2 + 4*Pi/3^(5/2) = F(1,2;1/2;1/4) = 2.806133050770763... (see L'Universe de Pi link) - Gerald McGarvey and Benoit Cloitre, Feb 13 2005
%C A000108 a(n) equals sum of squares of terms in row n of triangle A053121, which is formed from successive self-convolutions of the Catalan sequence. - Paul D. Hanna, Apr 23 2005
%C A000108 Comment from Donald D. Cross (cosinekitty(AT)hotmail.com), Feb 04 2005: Also coefficients of the Mandelbrot polynomial M iterated an infinite number of times. Examples: M(0) = 0 = 0*c^0 = [0], M(1) = c = c^1 + 0*c^0 = [1 0], M(2) = c^2 + c = c^2 + c^1 + 0*c^0 = [1 1 0], M(3) = (c^2 + c)^2 + c = [0 1 1 2 1], ... ... M(5) = [0 1 1 2 5 14 26 44 69 94 114 116 94 60 28 8 1], ...
%C A000108 The multiplicity with which a prime p divides C_n can be determined by first expressing n+1 in base p. For p=2, the multiplicity is the number of 1 digits minus 1. For p an odd prime, count all digits greater than (p+1)/2; also count digits equal to (p+1)/2 unless final; and count digits equal to (p-1)/2 if not final and the next digit is counted. For example, n=62, n+1 = 223_5, so C_62 is not divisible by 5. n=63, n+1 = 224_5, so 5^3 | C_63. - Frank Adams-Watters, Feb 08 2006
%C A000108 Koshy and Salmassi give an elementary proof that the only prime Catalan numbers are a(2) = 2 and a(3) = 5. Is the only semiprime Catalan number a(4) = 14? - Jonathan Vos Post, Mar 06 2006
%C A000108 Comment from Franklin T. Adams-Watters, Apr 14 2006: The answer is yes. Using the formula C_n = C(2n,n)/(n+1), it is immediately clear that C_n can have no prime factor greater than 2n. For n >= 7, C_n > (2n)^2, so it cannot be a semiprime. Given that the Catalan numbers grow exponentially, the above consideration implies that the number of prime divisors of C_n, counted with multiplicity, must grow without limit. The number of distinct prime divisors must also grow without limit, but this is more difficult. Any prime between n+1 and 2n (exclusive) must divide C_n. That the number of such primes grows without limit follows from the prime number theorem.
%C A000108 The number of ways to place n indistinguishable balls in n numbered boxes B1,...,Bn such that at most a total of k balls are placed in boxes B1,...,Bk for k=1,...,n. For example, a(3)=5 since there are 5 ways to distribute 3 balls among 3 boxes such that (i) box 1 gets at most 1 ball and (ii)box 1 and box 2 together get at most 2 balls:(O)(O)(O), (O)()(OO), ()(OO)(O), ()(O)(OO), ()()(OOO). - Dennis P. Walsh (dwalsh(AT)mtsu.edu), Dec 04 2006
%C A000108 a(n) is also the order of the semigroup of order-decreasing and order-preserving full transformations (of an n-element chain) - now known as the Catalan monoid [From A. Umar (aumarh(AT)squ.edu.om), Aug 25 2008]
%C A000108 a(n) is the number of trivial representations in the direct product of 2n spinor (the smallest) representations of the group SU(2) (A(1)). [From Rutger Boels (boels(AT)nbi.dk), Aug 26 2008]
%C A000108 The invert transform appears to converge to the catalan numbers when applied infinitely many times to any starting sequence. [From Mats O. Granvik, Gary W. Adamson and Roger L. Bagula, Sep 09 2008, Sep 12 2008]
%C A000108 lim(a(n)/a(n-1): n->infinity) = 4 [From Francesco Antoni (francesco_antoni(AT)yahoo.com), Nov 24 2008]
%C A000108 Starting with offset 1 = row sums of triangle A154559 [From Gary W. Adamson, Jan 11 2009]
%C A000108 C(n) is the degree of the Grassmanian G(1,n+1): the set of lines in (n+1)-dimensional projective space, or the set of planes through the origin in (n+2)-dimensional affine space. The Grassmanian is considered a subset of N-dimensional projective space, N = binomial(n+2,2) - 1. If we choose 2n general (n-1)-planes in projective (n+1)-space, then there are C(n) lines that meet all of them. [Benji Fisher (benji(AT)FisherFam.org), Mar 05 2009]
%C A000108 Contribution from Gary W. Adamson, May 01 2009: (Start)
%C A000108 Starting with offset 1 = A068875: (1, 2, 4, 10, 18, 84,...) convolved with
%C A000108 Fine numbers, A000957: (1, 0, 1, 2, 6, 18,...). a(6) = 132 =
%C A000108 (1, 2, 4, 10, 28, 84) dot (18, 6, 2, 1, 0, 1) = (18 + 12 + 8 + 10 + 0 + 84) = 132. (End)
%C A000108 Convolved with A032443: (1, 3, 11, 42, 163,...) = powers of 4, A000302: (1, 4, 16,...). [From Gary W. Adamson, May 15 2009]
%C A000108 Sum{k=1...Infinity,c(k-1)/2^(2k-1)}=1. The k-th term in the summation is the probability that a random walk on the integers (begining at the origin) will arrive at positive one (for the first time) in exactly (2k-1) steps. [From Geoffrey Critzer, Sep 12 2009]
%C A000108 C(p+q)-C(p)*C(q)=sum(C(i)*C(j)*C(p+q-i-j-1), i=0..(p-1), j=0..(q-1) ) [From Groux roland, Nov 13 2009]
%C A000108 Leonhard Euler used the formula C(n) = product_{i=3..n}(4*i-10)/(i-1) in his 'Betrachtungen, auf wie vielerley Arten ein gegebenes polygonum durch Diagonallinien in triangula zerschnitten werden k"onne' and computes by recursion C(n+2) for n = 1..8. (Berlin, 4th September 1751, in a letter to Goldbach). [From Peter Luschny, Mar 13 2010]
%C A000108 Let A179277 = A(x). Then C(x) is satisfied by A(x)/A(x^2). [From Gary W. Adamson, Jul 07 2010]
%C A000108 a(n)= A000680(n)/A006472(n) [From M.dols (markdols99(AT)yahoo.com), Jul 14 2010]
%C A000108 a(n) is also the number of quivers in the mutation class of type B_n or of type C_n. [From Christian Stump (christian.stump(AT)gmail.com), Nov 02 2010]
%C A000108 Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1) equals the number of ways to choose 0 or more balls of each color while satisfying the following conditions: 1. No two colors are chosen the same positive number of times. 2. For any two colors (c, d) that are chosen at least once, color c is chosen more times than color d iff color c appears more times in the original set than color d.
%C A000108 If the second requirement is lifted, the number of acceptable ways equals A000110(n+1). See related comments for A016098, A085082. [From Matthew Vandermast, Nov 22 2010]
%C A000108 Deutsch and Sagan prove the Catalan number C_n is odd if and only if n = 2^a - 1 for some nonnegative integer a. Lin proves for every odd Catalan number C_n, we have C_n == 1 (mod 4). [Jonathan Vos Post (jvospost3(AT)gmail.com), Dec 09 2010]
%C A000108 a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} such that f(1)=1 and for all n>=1 f(n+1)<=f(n)+1. For a nice bijection between this set of functions and the set of length 2n Dyck words see page 333 of the fxtbook (see link below).
%C A000108 Complement of A092459; A010058(a(n)) = 1. [Reinhard Zumkeller, Mar 29 2011]
%D A000108 The large number of references and links demonstrates the ubiquity of the Catalan numbers.
%D A000108 James Abello, The weak Bruhat order of S consistent sets, and Catalan numbers. SIAM J. Discrete Math. 4 (1991), 1-16.
%D A000108 M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
%D A000108 R. Alter, Some remarks and results on Catalan numbers, pp. 109-132 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 2, edited R. C. Mullin et al., 1971.
%D A000108 R. Alter and K. K. Kubota, Prime and prime power divisibility of Catalan numbers, J. Combinatorial Theory, Ser. A, 15 (1973), 243-256.
%D A000108 Jean-Christophe Aval, Multivariate Fuss-Catalan numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
%D A000108 R. Bacher and C. Krattenthaler, Chromatic statistics for triangulations and FussCatalan complexes, Electronic Journal of Combinatorics, 18 (2011), #P152.
%D A000108 D. F. Bailey, Counting Arrangements of 1's and -1's, Mathematics Magazine 69(2) 128-131 1996.
%D A000108 I. Bajunaid et al., Function series, Catalan numbers and random walks on trees, Amer. Math. Monthly 112 (2005), 765-785.
%D A000108 E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, Permutations avoiding an increasing number of length-increasing forbidden subsequences, Discrete Mathematics and Theoretical Computer Science 4, 2000, 31-44.
%D A000108 E. Barcucci, A. Frosini and S. Rinaldi, On directed-convex polyominoes in a rectangle, Discr. Math., 298 (2005). 62-78.
%D A000108 Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
%D A000108 Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
%D A000108 P. Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, Arxiv preprint arXiv:1107.5490, 2011.
%D A000108 F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-like Structures, EMA vol.67, Cambridge, 1998, p. 163, 167, 168, 252, 256, 291.
%D A000108 Matthew Bennett, Vyjayanthi Chari, R.J. Dolbin and Nathan Manning, Square Partitions and Catalan Numbers, arXiv: 0912.4983v1.
%D A000108 F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
%D A000108 A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7
%D A000108 M. Bona and B. E. Sagan, On Divisibility of Narayana Numbers by Primes, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.4.
%D A000108 Bousquet, Michel; and Lamathe, Cedric; On symmetric structures of order two. Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176.
%D A000108 W. G. Brown, Historical note on a recurrent combinatorial problem, Amer. Math. Monthly, 72 (1965), 973-977.
%D A000108 D. Callan, A combinatorial interpretation of a Catalan numbers identity, Math. Mag., 72 (1999), 295-298.
%D A000108 D. Callan, The maximum associativeness of division, Problem 11091, Amer. Math. Monthly, 113 (#5, 2006), 462-463.
%D A000108 David Callan, A Combinatorial Interpretation for a Super-Catalan Recurrence, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.8.
%D A000108 David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
%D A000108 Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
%D A000108 Chung, Kai Lai; Feller, W., On fluctuations in coin-tossing. Proc. Nat. Acad. Sci. U. S. A. 35, (1949). 605-608.
%D A000108 J. Cigler, Some nice Hankel determinants. Arxiv preprint arXiv:1109.1449, 2011.
%D A000108 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 53.
%D A000108 J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, ch. 4, pp 96-106.
%D A000108 S. J. Cyvin and I. Gutman, Kekule structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 183, 196, etc.).
%D A000108 E. Deutsch, Dyck path enumeration, Discrete Math., 204, 167-202, 1999.
%D A000108 E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
%D A000108 E. Deutsch and L. Shapiro, Seventeen Catalan identities, Bulletin of the Institute of Combinatorics and its Applications, 31, 31-38, 2001.
%D A000108 S. Dulucq and J.-G. Penaud, Cordes, arbres et permutations. Discrete Math. 117 (1993), no. 1-3, 89-105.
%D A000108 A. Errara, Analysis situs: une probleme d'enumeration, Memoires Acad. Bruxelles, Series 2, Vol. 11, No. 6, 26pp.
%D A000108 K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc., 10 (1997), 139-167.
%D A000108 Philippe Flajolet, Eric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics, arXiv:math.CO/0606370
%D A000108 Flajolet, Philippe; Gourdon, Xavier; and Dumas, Philippe; Mellin transforms and asymptotics: harmonic sums. Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 3-58.
%D A000108 Dominique Foata and Guo-Niu Han, Dimers and new q-tangent numbers, Preprint, 2008.
%D A000108 Dominique Foata and Guo-Niu Han, The dimer polynomial triangle, Preprint, 2008.
%D A000108 D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
%D A000108 H. G. Forder, Some problems in combinatorics, Math. Gazette, vol. 45, 1961, 199-201.
%D A000108 J. R. Gaggins, Constructing the Centroid of a Polygon, Math. Gaz., 61 (1988), 211-212.
%D A000108 M. Gardner, Time Travel and Other Mathematical Bewilderments, Chap. 20 pp. 253-266 W. H. Freeman NY 1988.
%D A000108 James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
%D A000108 H. W. Gould, Research bibliography of two special number sequences, Mathematica Monongaliae, Vol. 12, 1971.
%D A000108 Alain Goupil and Gilles Schaeffer, Factoring N-Cycles and Counting Maps of Given Genus . Europ. J. Combinatorics (1998) 19 819-834.
%D A000108 D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
%D A000108 M. Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), 53-63 and 85-93. [From Martin Griffiths (griffm(AT)essex.ac.uk), Mar 28 2009]
%D A000108 J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 530.
%D A000108 H. G. Grundman and E. A. Teeple, Sequences of Generalized Happy Numbers with Small Bases, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.8.
%D A000108 N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
%D A000108 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 67, (3.3.23).
%D A000108 J. Harris, Algebraic Geometry: A First Course (GTM 133), Springer-Verlag, 1992, pages 245-247. [From Benji Fisher (benji(AT)FisherFam.org), Mar 05 2009]
%D A000108 S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math., 308 (2008), 5954-5964.
%D A000108 Higgins, Peter M. Combinatorial results for semigroups of order-preserving mappings. Math. Proc. Camb. Phil. Soc. (1993), 113: 281-296. [From A. Umar (aumarh(AT)squ.edu.om), Aug 25 2008]
%D A000108 B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
%D A000108 R. H. Jeurissen, Raney and Catalan, Discrete Math., 308 (2008), 6298-6307.
%D A000108 M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
%D A000108 D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.6 (p. 450).
%D A000108 Thomas Koshy and Mohammad Salmassi, "Parity and Primality of Catalan Numbers", College Mathematics Journal, Vol. 37, No. 1 (Jan 2006), pp. 52-53.
%D A000108 M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
%D A000108 Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
%D A000108 Laradji, A. and Umar, A. On certain finite semigroups of order-decreasing transformations I, Semigroup Forum 69 (2004), 184-200 [From A. Umar (aumarh(AT)squ.edu.om), Aug 25 2008]
%D A000108 P. J. Larcombe, On pre-Catalan Catalan numbers: Kotelnikow (1766), Mathematics Today, 35 (1999), p. 25.
%D A000108 P. J. Larcombe, On the history of the Catalan numbers: a first record in China, Mathematics Today, 35 (1999), p. 89.
%D A000108 P. J. Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum, 32 (1999/2000), 5-7.
%D A000108 P. J. Larcombe and P. D. C. Wilson, On the trail of the Catalan sequence, Mathematics Today, 34 (1998), 114-117.
%D A000108 P. J. Larcombe and P. D. C. Wilson, On the generating function of the Catalan sequence: a historical perspective, Congress. Numer., 149 (2001), 97-108.
%D A000108 G. S. Lueker, Some techniques for solving recurrences, Computing Surveys, 12 (1980), 419-436.
%D A000108 J. J. Luo, Antu Ming, the first inventor of Catalan numbers in the world [in Chinese], Neimenggu Daxue Xuebao, 19 (1998), 239-245.
%D A000108 Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
%D A000108 Toufik Mansour and Simone Severini, Enumeration of (k,2)-noncrossing partitions, Discrete Math., 308 (2008), 4570-4577.
%D A000108 D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
%D A000108 A. Milicevic and N. Trinajstic, "Combinatorial Enumeration in Chemistry", Chem. Modell., Vol. 4, (2006), pp. 405-469.
%D A000108 Marni Mishna and Lily Yen, Set partitions with no k-nesting, Arxiv preprint arXiv:1106.5036, 2011
%D A000108 Liviu I. Nicolaescu, Counting Morse functions on the 2-sphere, arXiv:math/0512496.
%D A000108 C. O. Oakley and R. J. Wisner, Flexagons, Amer. Math. Monthly, 64 (1957), 143-154.
%D A000108 A. Panholzer and H. Prodinger, Bijections for ternary trees and non-crossing trees, Discrete Math., 250 (2002), 181-195 (see Eq. 4).
%D A000108 Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
%D A000108 S. G. Penrice, Stacks, bracketings and CG-arrangements, Math. Mag., 72 (1999), 321-324.
%D A000108 Karol A. Penson and Karol Zyczkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distributions, Phys. Rev E. vol. 83, 061118 (2011), arXiv:1103.3453, 2011.
%D A000108 C. A. Pickover, Wonders of Numbers, Chap. 71, Oxford Univ. Press NY 2000.
%D A000108 Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
%D A000108 R. Read, "Counting Binary Trees" in 'The Mathematical Gardner', D. A. Klarner Ed. pp. 331-334, Wadsworth CA 1989.
%D A000108 J.-L. Remy, Un procede iteratif de denombrement d'arbres binaires et son application a leur generation aleatoire, RAIRO Inform. Theor. 19 (1985), 179-195.
%D A000108 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
%D A000108 J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
%D A000108 T. Santiago Costa Oliveira, "Catalan traffic" and integrals on the Grassmannian of lines, Discr. Math., 308 (2007), 148-152.
%D A000108 A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.
%D A000108 A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
%D A000108 E. Schroeder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
%D A000108 J. A. von Segner, Enumeratio modorum, quibus figurae planae rectilineae per diagonales dividuntur in triangula, Novi Comm. Acad. Scient. Imper. Petropolitanae, 7 (1758/1759), 203-209.
%D A000108 L. W. Shapiro, A short proof of an identity of Touchard's concerning Catalan numbers, J. Combin. Theory, A 20 (1976), 375-376.
%D A000108 L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
%D A000108 L. W. Shapiro, W.-J. Woan and S. Getu, The Catalan numbers via the World Series, Math. Mag., 66 (1993), 20-22.
%D A000108 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000108 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A000108 Solomon, A. Catalan monoids, monoids of local endomorphisms and their presentations. Semigroup Forum 53 (1996), 351--368 [From A. Umar (aumarh(AT)squ.edu.om), Aug 25 2008]
%D A000108 Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
%D A000108 R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, Vol. 2, 1999; see especially Chapter 6.
%D A000108 R. P. Stanley, Recent Progress in Algebraic Combinatorics, Bull. Amer. Math. Soc., 40 (2003), 55-68.
%D A000108 Zhi-Wei Sun and Roberto Tauraso, Congruences involving Catalan numbers, arXiv:0709.1665v5.
%D A000108 A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, Arxiv preprint arXiv:1107.2938, 2011.
%D A000108 I. Vun and P. Belcher, Catalan numbers, Mathematical Spectrum, 30 (1997/1998), 3-5.
%D A000108 D. Wells, Penguin Dictionary of Curious and Interesting Numbers, Entry 42 p 121, Penguin Books, 1987.
%D A000108 Wen-jin Woan, A Recursive Relation for Weighted Motzkin Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.6.
%D A000108 Wen-jin Woan, A Relation Between Restricted and Unrestricted Weighted Motzkin Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.7.
%D A000108 Wen-jin Woan, Animals and 2-Motzkin Paths, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.6.
%D A000108 F. Yano and H. Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
%H A000108 N. J. A. Sloane, <a href="/A000108/b000108.txt">The first 200 Catalan numbers</a>
%H A000108 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Fxtbook</a>, p.333 and p.337.
%H A000108 M. Azaola and F. Santos, <a href="http://personales.unican.es/santosf/Articulos/">The number of triangulations of the cyclic polytope C(n,n-4)</a>, Discrete Comput. Geom., 27 (2002), 29-48. (C(n) = number of triangulations of cyclic polytope C(n,2).)
%H A000108 John Baez, <a href="http://math.ucr.edu/home/baez/week202.html">This week's finds in mathematical physics, Week 202</a>
%H A000108 E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, <a href="http://www.dmtcs.org/volumes/abstracts/dm040103.abs.html">Permutations avoiding an increasing number of length-increasing forbidden subsequences</a>
%H A000108 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210.
%H A000108 D. Bill, <a href="http://www.durangobill.com/BinTrees.html">Durango Bill's Enumeration of Binary Trees</a>
%H A000108 H. Bottomley, <a href="/A000108/a000108b.gif">Catalan Space Invaders</a>
%H A000108 H. Bottomley, <a href="/A002694/a002694.gif">Illustration for A000108, A001147, A002694, A067310 and A067311</a>
%H A000108 T. Bourgeron, <a href="http://www.dma.ens.fr/culturemath/maths/pdf/combi/montagnards.pdf">Montagnards et polygones</a>
%H A000108 M. Bousquet-Melou and Gilles Schaeffer, <a href="http://www.labri.fr/Perso/~bousquet/Articles/Slitplane/PTRF/final.ps.gz">Walks on the slit plane</a>, Probability Theory and Related Fields, Vol. 124, no. 3 (2002), 305-344.
%H A000108 K. S. Brown's Mathpages, <a href="http://www.mathpages.com/home/kmath322.htm">The Meanings of Catalan Numbers</a>
%H A000108 B. Bukh, PlanetMath.org, <a href="http://planetmath.org/encyclopedia/CatalanNumbers.html">Catalan numbers</a>
%H A000108 Alexander Burstein, Sergi Elizalde and Toufik Mansour, <a href="http://arXiv.org/abs/math.CO/0610234">Restricted Dumont permutations, Dyck paths and noncrossing partitions</a>, arXiv math.CO/0610234.
%H A000108 N. T. Cameron, <a href="http://www.princeton.edu/~wmassey/NAM03/cameron.pdf">Random walks, trees and extensions of Riordan group techniques</a>
%H A000108 P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H A000108 F. Cazals, <a href="http://algo.inria.fr/libraries/autocomb/NCC-html/NCC.html">Combinatorics of Non-Crossing Configurations</a>, Studies in Automatic Combinatorics, Volume II (1997).
%H A000108 Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Doignon/doignon40.html">Counting Biorders</a>, J. Integer Seqs., Vol. 6, 2003.
%H A000108 T. Davis, <a href="http://www.geometer.org/mathcircles/catalan.pdf">Catalan Numbers</a>
%H A000108 E. Deutsch and B. E. Sagan, <a href="http://arxiv.org/pdf/math.CO/0407326">Congruences for Catalan and Motzkin numbers and related sequences</a>, J. Num. Theory 117 (2006), 191-215.
%H A000108 R. M. Dickau, <a href="http://mathforum.org/advanced/robertd/catalan.html">Catalan numbers</a>
%H A000108 R. M. Dickau, <a href="http://www-groups.dcs.st-andrews.ac.uk/~history/Miscellaneous/CatalanNumbers/catalan.html">Catalan Numbers (another copy)</a>
%H A000108 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 18, 35
%H A000108 D. Foata and D. Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/classic.pdf">A classic proof of a recurrence for a very classical sequence</a>
%H A000108 I. Galkin, <a href="http://ulcar.uml.edu/~iag/CS/Catalan.html">Enumeration of the Binary Trees(Catalan Numbers)</a>
%H A000108 Mohammad GANJTABESH, Armin MORABBI and Jean-Marc STEYAERT, <a href="http://www2.lifl.fr/SEQUOIA/Arena/Presentations/Ganjtabesh.pdf">Enumerating the number of RNA structures</a>
%H A000108 H. W. Gould, <a href="http://www.ams.org/mathscinet-getitem?mr=2049119">Congr. Numer. 165 (2003) p 33-38</a>.
%H A000108 B. Gourevitch, <a href="http://www.pi314.net/">L'univers de Pi</a> (click Mathematiciens, Gosper)
%H A000108 R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">J. Integer Seqs., Vol. 3 (2000), #00.1.6</a>
%H A000108 Guo-Niu Han, <a href="http://www-irma.u-strasbg.fr/~guoniu/papers/p77puzzle.pdf">Enumeration of Standard Puzzles</a>
%H A000108 INRIA Algorithms Project, <a href="http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=48">Encyclopedia of Combinatorial Structures 48</a>
%H A000108 INRIA Algorithms Project, <a href="http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=52">Encyclopedia of Combinatorial Structures 52</a>
%H A000108 INRIA Algorithms Project, <a href="http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=71">Encyclopedia of Combinatorial Structures 71</a>
%H A000108 INRIA Algorithms Project, <a href="http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=76">Encyclopedia of Combinatorial Structures 76</a>
%H A000108 INRIA Algorithms Project, <a href="http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=284">Encyclopedia of Combinatorial Structures 284</a>
%H A000108 I. Jensen, <a href="http://www.ms.unimelb.edu.au/~iwan/polygons/Polygons_ser.html">Series exapansions for self-avoiding polygons</a>
%H A000108 S. Johnson, <a href="http://www.saintanns.k12.ny.us/depart/math/Seth/catafrm.html">The Catalan Numbers</a>
%H A000108 A. Karttunen, <a href="/A014486/a014486.pdf">Illustration of initial terms up to size n=7</a>
%H A000108 C. Kimberling, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Kimberling/kimberling24.html">Matrix Transformations of Integer Sequences</a>, J. Integer Seqs., Vol. 6, 2003.
%H A000108 W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H A000108 J. W. Layman, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.
%H A000108 Hsueh-Yung Lin, <a href="http://arxiv.org/abs/1012.1756">The odd Catalan numbers modulo 2^k</a>, Dec 8, 2010.
%H A000108 Colin L. Mallows and Lou Shapiro, <a href="http://www.cs.uwaterloo.ca/journals/JIS/MALLOWS/mallows.html">Balls on the Lawn</a>, J. Integer Sequences, Vol. 2, 1999, #5.
%H A000108 Toufik Mansour, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL5/Mansour/mansour6.html">Counting Peaks at Height k in a Dyck Path</a>, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.1
%H A000108 R. J. Marsh and P. P. Martin, <a href="http://arXiv.org/abs/math.CO/0612572">Pascal arrays: counting Catalan sets</a>
%H A000108 D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://www.dsi.unifi.it/~merlini/fun01.ps">Waiting patterns for a printer</a>, FUN with algorithm'01, Isola d'Elba, 2001.
%H A000108 A. Panayotopoulos and P. Tsikouras, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Panayotopoulos/panayo4.html">Meanders and Motzkin Words</a>, J. Integer Seqs., Vol. 7, 2004.
%H A000108 A. Panholzer and H. Prodinger, <a href="http://www.wits.ac.za/helmut/abstract/abs_159.htm">Bijections for ternary trees and non-crossing trees</a>, Discrete Math., 250 (2002), 181-195 (see Eq. 4).
%H A000108 P. Peart and W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/PEART/peart1.html">Generating Functions via Hankel and Stieltjes Matrices</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
%H A000108 P. Peart and W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/PEART/pwatjis2.html">Dyck Paths With No Peaks at Height k</a>, J. Integer Sequences, 4 (2001), #01.1.3.
%H A000108 K. A. Penson and J.-M. Sixdeniers, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">Integral Representations of Catalan and Related Numbers</a>, J. Integer Sequences, 4 (2001), #01.2.5.
%H A000108 Karol A. Penson and Karol Zyczkowski, <a href="http://dx.doi.org/10.1103/PhysRevE.83.061118">Product of Ginibre matrices : Fuss-Catalan and Raney distribution</a>, <a href="http://arxiv.org/abs/1103.3453/">arXiv version</a>
%H A000108 A. Sapounakis and P. Tsikouras, <a href="http://www.cs.uwaterloo.ca/journals/JIS/">On k-colored Motzkin words</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.5.
%H A000108 N. J. A. Sloane, <a href="/A000108/a000108.html">Illustration of initial terms</a>
%H A000108 Frank Sottile, <a href="http://www.math.umass.edu/~sottile/pages/ERAG/S4/1.html">The Schubert Calculus of Lines</a> (a section of Enumerative Real Algebraic Geometry)
%H A000108 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/papers.html">Hipparchus, Plutarch, Schr"oder and Hough</a>, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997.
%H A000108 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/ec/catalan.pdf">Exercises on Catalan and Related Numbers</a>
%H A000108 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/ec#catadd">Catalan Addendum</a>
%H A000108 Zhi-Wei Sun, <a href="http://front.math.ucdavis.edu/math.CO/0509648">A combinatorial identity with application to Catalan numbers</a>
%H A000108 V. S. Sunder, <a href="http://www.imsc.res.in/~sunder/catalan.pdf">Catalan numbers</a> [From Parthasarathy Nambi (PachaNambi(AT)yahoo.com), Dec 19 2009]
%H A000108 D. Taylor, <a href="http://www.maths.usyd.edu.au/u/don/code/Catalan/Catalan.html">Catalan Structures(up to C(7))</a>
%H A000108 G. Villemin's Almanac of Numbers, <a href="http://perso.wanadoo.fr/yoda.guillaume/Nb30a50/Catalan.htm">Nombres De Catalan</a>
%H A000108 Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CatalanNumber.html">Catalan Number</a>
%H A000108 Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BinaryBracketing.html">Binary Bracketing</a>
%H A000108 Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BinaryTree.html">Binary Tree</a>
%H A000108 Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NonassociativeProduct.html">Nonassociative Product</a>
%H A000108 Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StaircaseWalk.html">Staircase Walk</a>
%H A000108 Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DyckPath.html">Dyck Path</a>
%H A000108 W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">Hankel Matrices and Lattice Paths</a>, J. Integer Sequences, 4 (2001), #01.1.2.
%H A000108 <a href="/index/Cor#core">Index entries for "core" sequences</a>
%H A000108 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H A000108 <a href="/index/Par#parens">Index entries for sequences related to parenthesizing</a>
%H A000108 <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a>
%F A000108 a(n) = binomial(2n, n)/(n+1) = (2n)!/(n!(n+1)!).
%F A000108 a(n) = binomial(2n, n)-binomial(2n, n-1)
%F A000108 a(n) = Sum_{k=0..n-1} a(k)a(n-1-k).
%F A000108 G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x). G.f. A(x) satisfies A = 1 + x*A^2.
%F A000108 a(n+1) = Sum_{i} binomial(n, 2*i)*2^(n-2*i)*a(i) - Touchard.
%F A000108 2(2n-1)a(n-1) = (n+1)a(n).
%F A000108 It is known that a(n) is odd if and only if n=2^k-1, k=1, 2, 3, ... - Emeric Deutsch, Aug 04 2002.
%F A000108 Using the Stirling approximation in A000142 we get the asymptotic expansion a(n) ~ 4^n / (sqrt(Pi * n) * (n + 1)). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
%F A000108 Integral representation: a(n)=int(x^n*sqrt((4-x)/x), x=0..4)/(2*Pi). - Karol A. Penson (penson(AT)lptl.jussieu.fr), Apr 12 2001
%F A000108 E.g.f.: exp(2x) (I_0(2x)-I_1(2x)), where I_n is Bessel function. - Karol A. Penson, Oct 07 2001
%F A000108 Polygorial(n, 6)/Polygorial(n, 3) - Daniel Dockery (peritus(AT)gmail.com) Jun 24, 2003
%F A000108 G.f. A(x) satisfies ((A(x)+A(-x))/2)^2 = A(4*x^2). - Michael Somos, Jun 27, 2003
%F A000108 G.f. A(x) satisfies Sum_{k>=1} k(A(x)-1)^k = Sum_{n >= 1} 4^{n-1} x^n. - Shapiro, Woan, Getu
%F A000108 a(n+m) = Sum_{k} A039599(n, k)*A039599(m, k). - DELEHAM Philippe, Dec 22 2003
%F A000108 a(n+1) = (1/(n+1))*sum_{k=0..n} a(n-k)*binomial(2k+1, k+1) . - DELEHAM Philippe, Jan 24 2004
%F A000108 a(n) = Sum_{k>=0} A008313(n, k)^2 . - DELEHAM Philippe, Feb 14 2004
%F A000108 a(m+n+1) = Sum_{k>=0} A039598(m, k)*A039598(n, k) . - DELEHAM Philippe, Feb 15 2004
%F A000108 a(n)=sum{k=0..n, (-1)^k*2^(n-k)*binomial(n, k)*binomial(k, floor(k/2))} - Paul Barry, Jan 27 2005
%F A000108 a(n) = Sum_{k=0..[n/2]} ((n-2*k+1)*C(n, n-k)/(n-k+1))^2, which is equivalent to: a(n) = Sum_{k=0..n} A053121(n, k)^2, for n>=0. - Paul D. Hanna, Apr 23 2005
%F A000108 a((m+n)/2) = Sum_{k>=0} A053121(m, k)*A053121(n, k) if m+n is even . - Philippe DELEHAM, May 26 2005
%F A000108 E.g.f. Sum_{n>=0} a(n)*x^(2n)/(2n)! = BesselI(1, 2x)/x . - Michael Somos, Jun 22 2005
%F A000108 Given g.f. A(x), then B(x)=x*A(x^3) satisfies 0=f(x, B(X)) where f(u, v)=u-v+(uv)^2 or B(x)=x+(x*B(x))^2 which implies B(-B(x))=-x and also (1+B^3)/B^2 = (1-x^3)/x^2 . - Michael Somos Jun 27 2005
%F A000108 a(n) = a(n-1)*(4-6/(n+1)). a(n) = 2a(n-1)*(8a(n-2)+a(n-1))/(10a(n-2)-a(n-1)). - Frank Adams-Watters (FrankTAW(AT)Netscape.net), Feb 08 2006
%F A000108 Sum_{k=1}^{infinity} a(k)/4^k = 1. - Frank Adams-Watters, Jun 28 2006
%F A000108 a(n) = A047996(2*n+1,n) . - DELEHAM Philippe, Jul 25 2006
%F A000108 Binomial transform of A005043 . - Philippe DELEHAM, Oct 20 2006
%F A000108 a(n)=Sum_{k, 0<=k<=n}(-1)^k*A116395(n,k) . - Philippe DELEHAM, Nov 07 2006
%F A000108 a(n)=[1/(s-n)]*sum_{k=0..n} (-1)^k (k+s-n)*binomial(s-n,k)*binomial(s+n-k,s) with s a nonnegative free integer [H. W. Gould].
%F A000108 a(k) = Sum_{i=1..k} |A008276(i,k)| * (k-1)^(k-i) / k! - Andre F. Labossiere (boronali(AT)laposte.net), May 29 2007
%F A000108 a(n)=Sum_{k, 0<=k<=n}A129818(n,k)*A007852(k+1). - Philippe DELEHAM, Jun 20 2007
%F A000108 a(n)=Sum_{k, 0<=k<=n}A109466(n,k)*A127632(k). - Philippe DELEHAM, Jun 20 2007
%F A000108 Row sums of triangle A124926 - Gary W. Adamson, Oct 22 2007
%F A000108 For G.f. A(x), g(x)= x*A(x) is the compositional inverse of f(x) = x*(1-x) and this relates the Catalan numbers to the row sums of A125181. - Tom Copeland, Jan 13 2008
%F A000108 lim(1+Sum(a(k)/A004171(k): 0<=k<=n): n->infinity) = 4/pi. [From Reinhard Zumkeller, Aug 26 2008]
%F A000108 a(n)=Sum_{k, 0<=k<=n}A120730(n,k)^2 and a(k+1)=Sum_{n, n>=k}A120730(n,k). [From Philippe DELEHAM, Oct 18 2008]
%F A000108 Comment from Gary W. Adamson, Oct 27 2008: Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example the present sequence is Phi([1]) (also Phi([1,1])).
%F A000108 Formula from Thomas Wieder, Feb 25 2009:
%F A000108 a(n) = sum_{l_1=0}^{n+1} sum_{l_2=0}^{n}...sum_{l_i=0}^{n-i}...sum_{l_n=0}^{1}
%F A000108 delta(l_1,l_2,...,l_i,...,l_n)
%F A000108 where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i < l_(i+1) and l_(i+1) <> 0
%F A000108 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise.
%F A000108 C(n) = (4 - 6/n) * C(n-1) with C(1) = 1 [From M. Dols (markdols99(AT)yahoo.com), Feb 14 2010]
%F A000108 G.f. A(x), B(x)=x*A(x) satisfies the differential equation B'(x)-2*B'(x)*B(x)-1=0 [From Vladimir Kruchinin, Jan 18 2011]
%F A000108 G.f.: 1/(1-x/(1-x/(1-x/(...)))) (continued fraction). [Joerg Arndt, Mar 18 2011]
%F A000108 Contribution from Tom Copeland, Sept 04 2011: (Start)
%F A000108 With F(x) = (1-2*x-sqrt(1-4*x))/(2*x) an o.g.f. in x for the Catalan series, G(x)= x/(1+x)^2 is the compositional inverse of F (nulling the n=0 term).
%F A000108 With H(x) = 1/(dG(x)/dx) = (1+x)^3 / (1-x), the n-th Catalan number is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)), and H(x) is the o.g.f. for A115291. (End)
%F A000108 Contribution from Tom Copeland, Sept 30 2011: (Start)
%F A000108 With F(x)={1-sqrt[1-4*x]}/2 an o.g.f. in x for the Catalan series,
%F A000108 G(x)= x*(1-x) is the compositional inverse.
%F A000108 With H(x)=1/(dG(x)/dx)= 1/(1-2x), the n-th Catalan number (offset 1) is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e.,
%F A000108 F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)).(End)
%e A000108 The following products of 3 transpositions lead to a 4-cycle in S_4:
%e A000108 (1,2)*(1,3)*(1,4);
%e A000108 (1,2)*(1,4)*(3,4);
%e A000108 (1,3)*(1,4)*(2,3);
%e A000108 (1,4)*(2,3)*(2,4);
%e A000108 (1,4)*(2,4)*(3,4). [Joerg Arndt and Greg Stevenson, Jul 11 2011]
%p A000108 A000108 := n->binomial(2*n,n)/(n+1); G000108 := (1 - sqrt(1 - 4*x)) / (2*x);
%p A000108 spec := [ A, {A=Prod(Z,Sequence(A))}, unlabeled ]: [ seq(combstruct[count](spec, size=n), n=0..42) ];
%p A000108 with(combstruct):bin := {B=Union(Z,Prod(B,B))}: seq (count([B,bin,unlabeled],size=n), n=1..25); - Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Dec 05 2007
%p A000108 Z[0]:=0: for k to 42 do Z[k]:=simplify(1/(1-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..42): gser:=series(g, z=0, 42): seq(coeff(gser, z, n), n=0..41); - Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), May 21 2008
%t A000108 A000108[ n_ ] := (2 n)!/n!/(n+1)!
%t A000108 A000108[n_] := Hypergeometric2F1[1 - n, -n, 2, 1] (* Richard L. Ollerton, Sep 13 2006 *)
%t A000108 Table[ CatalanNumber@ n, {n, 0, 24}] (* RGWv, Feb 15 2011 *)
%o A000108 (MAGMA) C:= func< n | Binomial(2*n,n)/(n+1) >; [ C(n) : n in [0..60]];
%o A000108 (PARI) a(n)=if(n<0,0,(2*n)!/n!/(n+1)!)
%o A000108 (PARI) a(n)=local(A,m); if(n<0,0,m=1; A=1+x+O(x^2); while(m<=n,m*=2; A=sqrt(subst(A,x,4*x^2)); A+=(A-1)/(2*x*A)); polcoeff(A,n))
%o A000108 (PARI) a(n)=if(n<1,n==0,polcoeff(serreverse(x/(1+x)^2+x*O(x^n)),n)) (from Michael Somos)
%o A000108 (Mupad) combinat::dyckWords::count(n) $ n = 0..38 - Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Apr 14 2007
%o A000108 (Sage) [catalan_number(i) for i in range(27)] - Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Jun 26 2008
%o A000108 (Sage) [binomial(2*i,i)-binomial(2*i,i-1) for i in xrange(0,25)]# [From Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), May 17 2009]
%o A000108 (MAGMA) [Catalan(n): n in [0..40]]; - Vincenzo Librandi, Apr 02 2011
%o A000108 (Haskell)
%o A000108 a000108 n = a000108_list !! n
%o A000108 a000108_list = 1 : catalan [1] where
%o A000108 catalan cs = c : catalan (c:cs) where
%o A000108 c = sum $ zipWith (*) cs $ reverse cs
%o A000108 -- Reinhard Zumkeller, Nov 12 2011
%Y A000108 Cf. A000984, A002420, A048990, A024492, A000142, A022553, A039599, A094216, A094638, A014137, A094639, A099731, A008549, A008276, A094638 (|A008276|), A094216, A094639, A000984, A000108 A000245 A002057 A000344 A003517 A000588 A003518 A003519 A001392, A124926, A098597, A086117, A137697.
%Y A000108 A row of A060854.
%Y A000108 See A001003, A001190, A001699, A000081 for other ways to count parentheses.
%Y A000108 Enumerates objects encoded by A014486.
%Y A000108 A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
%Y A000108 A diagonal of the square array described in A051168.
%Y A000108 Cf. A000957, A068875, A032443, A179277, A154559 [From Gary W. Adamson]
%Y A000108 Partitions into Catalan numbers: A033552, A176137. [From Reinhard Zumkeller, Apr 10 2010]
%K A000108 core,nonn,easy,eigen,nice,changed
%O A000108 0,3
%A A000108 N. J. A. Sloane (njas(AT)research.att.com).
%I A120588
%S A120588 1,1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,
%T A120588 9694845,35357670,129644790,477638700,1767263190,6564120420,
%U A120588 24466267020,91482563640,343059613650,1289904147324,4861946401452,18367353072152
%N A120588 G.f. satisfies: 3*A(x) = 2 + x + A(x)^2, starting with [1,1,1].
%C A120588 This is essentially a duplicate of entry A000108, the Catalan numbers (a(n) = A000108(n-1) for n>0).
%C A120588 In order for the g.f. of an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n, where n > 1, it is necessary that the sequence start with [1, d, m*n*(n-1)/2], where d divides m*n*(n-1)/2 (m>0) and that the coefficients are given by r = n + d^2/m, c = r-1 and b = d^3/m. The remaining terms may then be integer and still satisfy: a_n(k) = r*a(k), where a_n(k) is the k-th term of the n-th self-convolution of the sequence.
%F A120588 G.f.: A(x) = 1 + Series_Reversion(1+3*x - (1+x)^2).
%F A120588 Lagrange Inversion yields g.f.: A(x) = Sum_{n>=0} C(2*n,n)/(n+1)*(2+x)^(n+1)/3^(2*n+1).
%F A120588 G.f.:(3-sqrt(1-4*x))/2 [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
%F A120588 a(n) = Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
%e A120588 A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 +...
%e A120588 A(x)^3 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 +..
%e A120588 More generally, given the functional equation:
%e A120588 r*A(x) = r-1 + b*x + A(x)^n
%e A120588 the series solution is:
%e A120588 A(x) = Sum_{i>=0} C(n*i,i)/(n*i-i+1)*(r-1+bx)^(n*i-i+1)/r^(n*i+1)
%e A120588 which can be expressed as:
%e A120588 A(x) = G( (r-1+bx)^(n-1)/r^n ) * (r-1+bx)/r
%e A120588 where G(x) satisfies: G(x) = 1 + x*G(x)^n .
%e A120588 Also we have:
%e A120588 A(x) = 1 + Series_Reversion[ (1 + r*x - (1+x)^n )/b ].
%o A120588 (PARI) {a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A,n)}
%o A120588 (PARI) {a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n,
%o A120588 A[k] = sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
%Y A120588 Cf. A120589 (A(x)^2); A120590 - A120607.
%K A120588 nonn
%O A120588 0,4
%A A120588 Paul D. Hanna (pauldhanna(AT)juno.com), Jun 16 2006, Jan 24 2008
%I A080937
%S A080937 1,1,2,5,14,42,131,417,1341,4334,14041,45542,147798,479779,1557649,
%T A080937 5057369,16420730,53317085,173118414,562110290,1825158051,5926246929,
%U A080937 19242396629,62479659622,202870165265,658715265222,2138834994142
%N A080937 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.
%C A080937 With interpolated zeros (1,0,1,0,2,...), counts closed walks of length n at start or end node of P_6. The sequence (0,1,0,2,...) counts walks of length n between the start and second node. - Paul Barry (pbarry(AT)wit.ie), Jan 26 2005
%D A080937 Aleksandar Ilic and Andreja Ilic, On the number of restricted Dyck paths, Filomat 25:3 (2011), 191-201; DOI: 10.2298/FIL1103191I, http://operator.pmf.ni.ac.rs/www/pmf/publikacije/filomat/2011/F25-3-2011/F25-3-17.pdf
%H A080937 <a href="/index/Rea#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (5,-6,1).
%F A080937 a(n) =A080934(n, 5)
%F A080937 G.f.: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3). - Ralf Stephan (ralf(AT)ark.in-berlin.de), May 13 2003
%F A080937 a(n) = 5*a(n-1)-6*a(n-2)+a(n-3) - Herbert Kociemba (kociemba(AT)t-online.de), Jun 11 2004
%F A080937 a(n)=A096976(2*n) - Floor van Lamoen (fvlamoen(AT)hotmail.com), Nov 02 2005
%F A080937 a(n)=(4/7-4/7*cos(1/7*Pi)^2)*(4*(cos(Pi/7))^2)^n+(1/7-2/7*cos(1/7*Pi)+4/7*cos(1/7*Pi)^2)*(4*(cos(2*Pi/7))^2)^n+(2/7+2/7*cos(1/7*Pi))*(4*(cos(3*Pi/7))^2)^n for n>=0. [From Richard Choulet (richardchoulet(AT)yahoo.fr), Apr 19 2010]
%o A080937 (PARI) a=vector(99);a[1]=1;a[2]=2;a[3]=5;for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2]+a[n-3]);a \\ Charles R Greathouse IV, Jun 10 2011
%Y A080937 Cf. A000007, A000012, A011782, A001519, A007051, A080937, A024175, A080938, A033191 which essentially provide the same sequence for different limits and tend to A000108.
%Y A080937 Cf. A094790, A094789, A005021.
%K A080937 nonn,easy
%O A080937 0,3
%A A080937 Henry Bottomley (se16(AT)btinternet.com), Feb 25 2003
%I A080934
%S A080934 1,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,2,4,1,0,1,1,2,5,8,1,0,1,1,2,5,13,
%T A080934 16,1,0,1,1,2,5,14,34,32,1,0,1,1,2,5,14,41,89,64,1,0,1,1,2,5,14,42,
%U A080934 122,233,128,1,0,1,1,2,5,14,42,131,365,610,256,1,0,1,1,2,5,14,42,132,417,1094
%N A080934 Square array read by antidiagonals of number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2n steps with all values less than or equal to k.
%C A080934 Number of permutations in S_n avoiding both 132 and 123...k.
%C A080934 T(n,k) = number of rooted ordered trees on n nodes of depth <= k. Also, T(n,k) = number of {1,-1} sequences of length 2n summing to 0 with all partial sums are >=0 and <= k. Also, T(n,k) = number of closed walks of length 2n on a path of k nodes starting from (and ending at) a node of degree 1. - Mitch Harris, Mar 06 2004
%C A080934 Also T(n,k) = k-th coefficient in expansion of the rational function R(n), where R(1) = 1, R(n+1) = 1/(1-x*R(n)), which means also that lim(n->inf,R(n)) = g.f. of Catalan numbers (A000108) wherever it has real value (see Mansour article). - Clark Kimberling and Ralf Stephan, May 26 2004
%D A080934 Aleksandar Ilic and Andreja Ilic, On the number of restricted Dyck paths, Filomat 25:3 (2011), 191-201; DOI: 10.2298/FIL1103191I, http://operator.pmf.ni.ac.rs/www/pmf/publikacije/filomat/2011/F25-3-2011/F25-3-17.pdf
%H A080934 T. Mansour, <a href="http://arXiv.org/abs/math.CO/0302014">[math/0302014] Restricted even permutations and Chebyshev polynomials</a>
%H A080934 T. Mansour and A. Vainshtein, <a href="http://arXiv.org/abs/math.CO/9912052">Restricted permutations, continued fractions and Chebyshev polynomials</a>
%H A080934 C. Krattenthaler, <a href="http://arXiv.org/abs/math.CO/0002200">Permutations with restricted patterns and Dyck paths</a>
%F A080934 T(n, k) = sum_i{0<i<k)T(i, k)*T(n-i, k-1) with T(0, k)=1 and T(n, 0)=0^n. For 1<=k<=n T(n, k) =A080935(n, k) =T(n, k-1)+A080936(n, k); for k>=n T(n, k)=A000108(n).
%F A080934 T(n, k)=2^(2n+1)/(k+2)*Sum{i=1, k+1, [sin(pi*i/(k+2))*cos(pi*i/(k+2))^n]^2} for n>=1 - Herbert Kociemba (kociemba(AT)t-online.de), Apr 28 2004
%F A080934 G.f. of n-th row: B(n)/B(n+1) where B(j)=[(1+sqrt(1-4x))/2]^j-[(1-sqrt(1-4x))/2]^j.
%e A080934 Rows start 1,1,1,1,1,1,...; 0,1,1,1,1,1,...; 0,1,2,2,2,2,...; 0,1,4,5,5,5,...; 0,1,8,13,14,14,...; 0,1,16,34,41,42,...; etc. T(3,2)=4 since the paths of length 2*3 (7 points) with all values less than or equal to 2 can take the routes 0101010, 0101210, 0121010 or 0121210, but not 0123210.
%Y A080934 Cf. A000108, A079214, A080935, A080936. Rows include A000012, A057427, A040000 (offset), columns include (essentially) A000007, A000012, A011782, A001519, A007051, A080937, A024175, A080938, A033191. Main diagonal is A000108.
%Y A080934 Cf. A094718 (involutions).
%K A080934 nonn,tabl
%O A080934 0,13
%A A080934 Henry Bottomley (se16(AT)btinternet.com), Feb 25 2003
%I A058094
%S A058094 1,2,5,14,42,132,429,1426,4806,16329,55740,190787,654044,2244153,
%T A058094 7704047,26455216,90860572,312090478,1072034764,3682565575,
%U A058094 12650266243,43456340025,149282561256,512821712570,1761669869321,6051779569463
%N A058094 Number of 321-hexagon-avoiding permutations in S_n, i.e. permutations of 1...n with no submatrix equivalent to 321, 56781234, 46781235, 56718234 or 46718235.
%C A058094 If y is 321-hexagon avoiding, there are simple explicit formulas for all the Kazhdan-Lusztig polynomials P_{x,y} and the Kazhdan-Lusztig basis element C_y is the product of C_{s_i}'s corresponding to any reduced word for y.
%D A058094 Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
%H A058094 S. C. Billey and G. S. Warrington, <a href="http://www-math.mit.edu/~sara/papers/hexagon.ps">Kazhdan-Lusztig Polynomials for 321-hexagon-avoiding permutations</a>, J. Alg. Combinatorics, 13, no. 2 (March 2001), 111-136.
%F A058094 a(n+1) = 6a(n) - 11a(n-1) + 9a(n-2) - 4a(n-3) - 4a(n-4) + a(n-5) for n >= 6.
%F A058094 O.g.f.: -x*(1-4*x+4*x^2-3*x^3-x^4+x^5)/(-1+6*x-11*x^2+9*x^3-4*x^4-4*x^5+x^6). - R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Dec 02 2007
%e A058094 Since the Catalan numbers count 321-avoiding permutations in S_n, a(8)=1430-4=1426 subtracting the four forbidden hexagon patterns.
%p A058094 a[1]:=1: a[2]:=2: a[3]:=5: a[4]:=14: a[5]:=42: a[6]:=132: for n from 6 to 35 do a[n+1]:=6*a[n]-11*a[n-1]+9*a[n-2]-4*a[n-3]-4*a[n-4]+a[n-5] od: seq(a[n],n=1..35);
%Y A058094 Cf. A000108, A092489-A092492.
%K A058094 nice,nonn,easy
%O A058094 1,2
%A A058094 Sara C. Billey (sara(AT)math.mit.edu), Dec 03 2000
%E A058094 More terms from Emeric Deutsch (deutsch(AT)duke.poly.edu), May 04 2004
%I A024175
%S A024175 1,1,2,5,14,42,132,428,1416,4744,16016,54320,184736,629280,2145600,
%T A024175 7319744,24979584,85262464,291057920,993641216,3392317952,11581727232,
%U A024175 39541748736,135002491904,460924372992,1573688313856,5372896120832
%N A024175 Expansion of (x^3-6*x^2+5*x-1)/((2*x-1)*(2*x^2-4*x+1))
%C A024175 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,....,2n, s(0) = 1, s(2n) = 1. - Herbert Kociemba (kociemba(AT)t-online.de), Jun 11 2004
%C A024175 Contribution from Johannes W. Meijer (meijgia(AT)hotmail.com), May 29 2010: (Start)
%C A024175 Counts all paths of length (2*n), n>=0, starting and ending at the initial node on the path graph P_7, see the Maple program.
%C A024175 (End)
%H A024175 <a href="/index/Rea#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (6,-10,4).
%F A024175 a(n)=(1/4)*Sum(r, 1, 7, Sin(r*Pi/8)^2(2Cos(r*Pi/8))^(2n)), n>=1 a(n)= 6a(n-1)-10a(n-2)+4a(n-3), n>=4 - Herbert Kociemba (kociemba(AT)t-online.de), Jun 11 2004
%F A024175 a(n)=(1/4)*((2+sqrt(2))^(n-1)+(2-sqrt(2))^(n-1)+2^n) for n>=1. [From Richard Choulet (richardchoulet(AT)yahoo.fr), Apr 19 2010]
%F A024175 a(n) = 2^(n-2) + A006012(n-1)/2, n>0. - R. J. Mathar, Mar 14 2011
%p A024175 Contribution from Johannes W. Meijer (meijgia(AT)hotmail.com), May 29 2010: (Start)
%p A024175 with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=26; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=B(n)[1,1]; od: seq(a(2*n),n=0..nmax);
%p A024175 (End)
%Y A024175 Cf. A006012, A030436 and A094803.
%K A024175 nonn
%O A024175 0,3
%A A024175 N. J. A. Sloane (njas(AT)research.att.com).
%I A033191
%S A033191 1,1,2,5,14,42,132,429,1430,4861,16778,58598,206516,732825,2613834,
%T A033191 9358677,33602822,120902914,435668420,1571649221,5674201118,
%U A033191 20497829133,74079051906,267803779710,968355724724
%N A033191 Binomial transform of [ 1, 0, 1, 1, 3, 6, 15, 36, 91, 231, 595,... ], which is essentially binomial(fibonacci(k) + 1, 2).
%C A033191 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,....,2n, s(0) = 1, s(2n) = 1. - Herbert Kociemba (kociemba(AT)t-online.de), Jun 14 2004
%C A033191 Contribution from Paul Barry (pbarry(AT)wit.ie), Dec 17 2009: (Start)
%C A033191 The sequence 1,2,5,14,... has g.f. 1/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x))))=(1-6x+10x^2-4x^3)/(1-8x+21x^2-20x^3+5x^4),
%C A033191 and is the second binomial transform A001519 aerated. (End)
%C A033191 Contribution from Johannes W. Meijer (meijgia(AT)hotmail.com), May 29 2010: (Start)
%C A033191 Counts all paths of length (2*n), n>=0, starting and ending at the initial node on the path graph P_9, see the Maple program.
%C A033191 (End)
%F A033191 G.f.: (1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4). - Ralf Stephan (ralf(AT)ark.in-berlin.de), May 13 2003
%F A033191 a(n)=(1/5)*Sum(r, 1, 9, Sin(r*Pi/10)^2(2Cos(r*Pi/10))^(2n)), n>=1 a(n)=8a(n-1)-21a(n-2)+20a(n-3)-5a(n-4), n>=5 - Herbert Kociemba (kociemba(AT)t-online.de), Jun 14 2004
%F A033191 a(2)=1, a(3)=2, a(4)=5, a(5)=14, a(n)=8a(n-1)-21a(n-2)+20a(n-3)- 5a(n-4) [From Harvey P. Dale, Apr 26 2011]
%p A033191 Contribution from Johannes W. Meijer (meijgia(AT)hotmail.com), May 29 2010: (Start)
%p A033191 with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):=B(n)[1,1]; od: seq(a(2*n),n=0..nmax);
%p A033191 (End)
%t A033191 CoefficientList[Series[(1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4), {x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{8,-21,20,-5},{1,2,5,14}, 30]] (* From Harvey P. Dale, Apr 26 2011 *)
%Y A033191 Cf. A033192.
%Y A033191 Cf. A081567, A147748 and A178381.
%K A033191 nonn
%O A033191 0,3
%A A033191 Simon Norton (simon(AT)dpmms.cam.ac.uk)
%I A061922
%S A061922 1,1,2,5,14,42,132,421,1382,4478,15580,54114,181676,650484,2289320,
%T A061922 8028901,28045302,103229014,372640460,1336511110,4882492452,
%U A061922 17534836812,63692926552,234287550818,868236370364,3281589811404
%N A061922 Xcatalans - produced as a self-convolved sequence like Catalan numbers (A000108) but use carryless GF(2)[ X ] polynomial multiplication.
%C A061922 Shifts one place left when Xmult-convolved (XMULTCONV) with itself.
%p A061922 Xcatalans(30); Xcatalans := proc(upto_n) local a,i,k; a := [1]; for i from 1 to upto_n do a := [ op(a), add(Xmult(a[k],a[i-k+1]), k=1..i)]; od; RETURN(a); end;
%p A061922 XMULTCONV := proc(a,b) local c,i,k,n; n := min( nops(a), nops(b) ); c := []; for i from 0 to n-1 do c := [ op(c), add(Xmult(a[k+1],b[i-k+1]), k=0..i)]; od; RETURN(c); end;
%Y A061922 For Xmult, see A048720 (Xmult table) or A048631 (Xfactorials). Other self-convolved sequences: A000108, A007460 - A007464, A025192.
%K A061922 nonn,easy,eigen
%O A061922 0,3
%A A061922 Antti Karttunen May 15 2001
%I A000744
%S A000744 1,2,5,14,42,144,563,2526,12877,73778,469616,3288428,25121097,
%T A000744 207902202,1852961189,17694468210,180234349762,1950592724756,
%U A000744 22352145975707,270366543452702,3442413745494957,46021681757269830
%N A000744 Boustrophedon transform (second version) of Fibonacci numbers 1,1,2,3,... ...
%H A000744 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon on transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://www.research.att.com/~njas/doc/bous.txt">Abstract</a>, <a href="http://www.research.att.com/~njas/doc/bous.pdf">pdf</a>, <a href="http://www.research.att.com/~njas/doc/bous.ps">ps</a>).
%H A000744 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A000744 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%p A000744 read(transforms);
%p A000744 with(combinat):
%p A000744 F:=fibonacci;
%p A000744 [seq(F(n), n=1..50)];
%p A000744 BOUS2(%);
%Y A000744 Cf. A000045, A000687, A000738, A092073.
%K A000744 nonn
%O A000744 0,2
%A A000744 N. J. A. Sloane (njas(AT)research.att.com).
%E A000744 Entry revised by N. J. A. Sloane, Mar 16 2011
%I A080938
%S A080938 1,1,2,5,14,42,132,429,1429,4846,16645,57686,201158,704420,2473785,
%T A080938 8704089,30664890,108126325,381478030,1346396146,4753200932,
%U A080938 16783118309,59266297613,209302921830,739203970773,2610763825782,9221050139566
%N A080938 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2n steps with all values less than or equal to 7.
%F A080938 a(n) =A080934(n, 7)
%F A080938 G.f.: (1-6x+10x^2-4x^3)/(1-7x+15x^2-10x^3+x^4). - Ralf Stephan (ralf(AT)ark.in-berlin.de), May 13 2003
%F A080938 a(n)=7a(n-1)-15a(n-2)+10a(n-3)-a(n-4) - Herbert Kociemba (kociemba(AT)t-online.de), Jun 13 2004
%Y A080938 Cf. A000007, A000012, A011782, A001519, A007051, A080937, A024175, A080938, A033191 which essentially provide the same sequence for different limits and tend to A000108.
%K A080938 nonn
%O A080938 0,3
%A A080938 Henry Bottomley (se16(AT)btinternet.com), Feb 25 2003
%I A137560
%S A137560 1,0,1,0,1,1,0,1,1,2,1,0,1,1,2,5,6,6,4,1,0,1,1,2,5,14,26,44,69,94,114,
%T A137560 116,94,60,28,8,1,0,1,1,2,5,14,42,100,221,470,958,1860,3434,6036,
%U A137560 10068,15864,23461,32398,41658,49700,54746,55308,50788,41944,30782,19788
%N A137560 Triangle read by rows: coefficients of the Mandelbrot-Julia quadratic polynomials (sometimes called cycle polynomials or Pc polynomials): Pc[0]=1; Pc[1]=c; Pc[n]=nestedfunction(Pc[z^2+c],n].
%C A137560 Row sums are: {1, 1, 2, 5, 26, 677, 458330, 210066388901, 44127887745906175987802, ...};
%C A137560 The root of one of these polynomials g1ves Julia Douady's rabbit.
%C A137560 These polynomials are basic to the theory of "cycles" in complex dynamics.
%C A137560 These polynomials are also described in a comment by Donald D. Cross in the entry for the Catalan numbers, A000108.
%C A137560 Except for the first row, row sums are A003095 (a(n) = a(n-1)^2 + 1). [From Gerald McGarvey (gerald.mcgarvey(AT)comcast.net), Sep 26 2008]
%C A137560 The coefficients also enumerate the ways to divide a line segment into at most j pieces, with 0 <= j <= 2^n, in which every piece is a power of two in size (for example, 1/4 is allowed but 3/8 is not), no piece is less than 1/2^n of the whole, and every piece is aligned on a power of 2 boundary (so 1/4+1/2+1/4=1 is not allowed). See the everything2 web link (which treats the segment as a musical measure). [From Robert Munafo (mrob27(AT)gmail.com), Oct 29 2009]
%C A137560 Also the number of binary trees with exactly J leaf nodes and a height no greater than N. See the Munafo web page and note the connection to A003095. [From Robert Munafo (mrob27(AT)gmail.com), Nov 03 2009]
%C A137560 The sequence of polynomials is conjectured to tend to the Catalan numbers (A000108) [From Jon Perry (jonperrydc(AT)btinternet.com), Oct 31 2010]
%D A137560 Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer,New York,1993,pp 128-129
%H A137560 Roger L. Bagula, <a href="/A137560/b137560.txt">Table of n, a(n) for n = 1..264</a>
%H A137560 Robert Munafo, <a href="http://www.mrob.com/pub/muency/lemniscates.html">Lemniscates</a> [From Robert Munafo (mrob27(AT)gmail.com), Oct 29 2009]
%H A137560 Everything2 user ferrouslepidoptera, <a href="http://www.everything2.com/index.pl?node_id=710894&lastnode_id=0">How many melodies are there in the universe?</a> [From Robert Munafo (mrob27(AT)gmail.com), Oct 29 2009]
%e A137560 Examples: Pc[2] = f[z,c] = z^2+c with z->c = c^2+c; Pc[3] = f[f[z,c],c] => c+c^2+2*c^3+c^4.
%e A137560 {1},
%e A137560 {0, 1},
%e A137560 {0, 1, 1},
%e A137560 {0, 1, 1, 2, 1},
%e A137560 {0, 1, 1, 2, 5, 6, 6, 4, 1},
%e A137560 {0, 1, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
%e A137560 {0, 1, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
%t A137560 f[z_] = z^2 + x; g = Join[{1}, ExpandAll[NestList[f, x, 7]]]; a = Table[CoefficientList[g[[n]], x], {n, 1, Length[g]}]; Flatten[a] Table[Apply[Plus, CoefficientList[g[[n]], x]], {n, 1, Length[g]}];
%t A137560 The following Mathematica program gives a second method for computing the polynomials without using a nesting method: p(x,n)=p(x,n-1)^2+x.
%t A137560 p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = x; p[x, 2] = x + x^2; p[x_, n_] := p[x, n] = p[x, n - 1]^2 + x; Table[ExpandAll[p[x, n]], {n, 0, 7}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 7}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 7}];
%o A137560 (PARI) p = vector(6); p[1] = x; for(n=2,6, p[n] = p[n-1]^2 + x); print1("1"); for(n=1,6, for(m=0,poldegree(p[n]), print1(", ",polcoeff(p[n],m)))) [From Gerald McGarvey (gerald.mcgarvey(AT)comcast.net), Sep 26 2008]
%Y A137560 A052154 gives the same array read by antidiagonals. A137867 gives the related Misiurewicz polynomials. [From Robert Munafo (mrob27(AT)gmail.com), Dec 12 2009]
%K A137560 nonn,tabl
%O A137560 1,10
%A A137560 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Apr 25 2008, Apr 27 2008
%E A137560 Edited by N. J. A. Sloane (njas(AT)research.att.com), Apr 26 2008
%I A054393
%S A054393 1,1,2,5,14,42,132,428,1417,4757,16119,54963,188219,646460,2224944,
%T A054393 7668915,26461005,91371594,315689675,1091166442,3772747245,
%U A054393 13047503222,45131078409,156129312025,540181837728,1869097588540,6467740095295
%N A054393 Number of permutations with certain forbidden subsequences.
%D A054393 E. Barcucci et al., From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
%H A054393 J. W. Layman, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.
%Y A054393 Interpolates between Motzkin numbers (A001006) and Catalan numbers (A000108). Cf. A005773, A054391-A054394.
%K A054393 nonn
%O A054393 0,3
%A A054393 N. J. A. Sloane (njas(AT)research.att.com), Elisa Pergola (elisa(AT)dsi.unifi.it), May 21 2000
%I A126569
%S A126569 1,2,5,14,42,132,430,1444,4981,17594,63442,232828,867146,3269060,
%T A126569 12446684,47771496,184544427,716658870,2794956099,10938266562
%N A126569 Top-left "head" entry of the n-th power of the E8 Cartan matrix.
%H A126569 Anonymous, <a href="http://en.wikipedia.org/wiki/E8_(Mathematics)">E8</a>, Wikipedia.
%F A126569 a(n) = leftmost term in M^n * [1,0,0,0,0,0,0,0], where M = the 8x8 matrix [2,-1,0,0,0,0,0,0; -1,2,-1,0,0,0,0,0; 0,-1,2,-1,0,0,0,-1; 0,0,-1, 2,-1,0,0,0; 0,0,0-1,2,-1,0,0; 0,0,0,0,-1,2,-1,0; 0,0,0,0,0,-1,2,0; 0,0,-1,0,0,0,0,2].
%F A126569 a(n)=16a(n-1)-105a(n-2)+364a(n-3)-714a(n-4)+784(n-5)-440a(n-6)+96a(n-7)-a(n-8). G.f.: -(2*x-1)*(2*x^2-4*x+1)*(x^4-16*x^3+20*x^2-8*x+1)/(1-16*x+105*x^2-364*x^3+714*x^4-784*x^5+440*x^6-96*x^7+x^8) [R. J. Mathar (mathar(AT)strw.leidenuniv.nl), May 08 2009]
%e A126569 a(6) = 430 = leftmost term in M^6 * [1,0,0,0,0,0,0,0].
%p A126569 E8 := matrix(8,8,[ [2, -1, 0, 0, 0, 0, 0, 0 ], [ -1, 2, -1, 0, 0, 0, 0, 0 ], [ 0, -1, 2, -1, 0, 0, 0, -1 ], [ 0, 0, -1, 2, -1, 0, 0, 0 ], [ 0, 0, 0, -1, 2, -1, 0, 0 ], [ 0, 0, 0, 0, -1, 2, -1, 0 ], [ 0, 0, 0, 0, 0, -1, 2, 0 ], [ 0, 0, -1, 0, 0, 0, 0, 2 ] ]) ;
%p A126569 printf("1,") ; for n from 1 to 20 do T := evalm(E8^n) ; printf("%a,", T[1,1]) ; od: # R. J. Mathar (mathar(AT)strw.leidenuniv.nl), May 08 2009
%Y A126569 Cf. A126566, A126567, A126568.
%K A126569 nonn
%O A126569 0,2
%A A126569 Gary W. Adamson (qntmpkt(AT)yahoo.com), Dec 28 2006
%E A126569 Edited by R. J. Mathar (mathar(AT)strw.leidenuniv.nl), May 08 2009
%I A035052
%S A035052 1,1,2,5,14,42,134,444,1518,5318,18989,68856,252901,938847,3517082,
%T A035052 13278844,50475876,193014868,741963015,2865552848,11113696421,
%U A035052 43266626430,169019868095,662337418989,2602923589451,10256100717875
%N A035052 Number of sets of rooted connected graphs where every block is a complete graph.
%H A035052 T. D. Noe, <a href="/A035052/b035052.txt">Table of n, a(n) for n=0..200</a>
%H A035052 INRIA Algorithms Project, <a href="http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=862">Encyclopedia of Combinatorial Structures 862</a>
%H A035052 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A035052 Euler transform of A007563.
%p A035052 with (numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add (add (d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(aa): c:= etr(b): aa:= n-> if n=0 then 0 else c(n-1) fi: a:= etr (aa): seq (a(n), n=0..25); [From Alois P. Heinz (heinz(AT)hs-heilbronn.de), Sep 09 2008]
%Y A035052 Cf. A007549, A007563, A030019, A035051, A035053.
%K A035052 nonn
%O A035052 0,3
%A A035052 Christian G. Bower (bowerc(AT)usa.net), Oct 15 1998.
%I A036769
%S A036769 1,1,2,5,14,42,132,429,1429,4852,16730,58422,206192,734332,2635680,
%T A036769 9524301,34622207,126520393,464517300,1712650520,6338433840,
%U A036769 23538973950,87690410580,327611738790,1227178265182,4607940112396,17341126763366
%N A036769 Number of rooted trees with a degree constraint.
%D A036769 L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (6).
%H A036769 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%p A036769 r := 7; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ]; end;
%o A036769 (PARI) a(n)=if(n<0,0,polcoeff(serreverse(x/sum(k=0,7,x^k)+O(x^(n+2))),n+1)) (from R. Stephan)
%K A036769 nonn
%O A036769 0,3
%A A036769 N. J. A. Sloane (njas(AT)research.att.com).
%I A052154
%S A052154 1,1,0,1,1,0,1,1,0,0,1,1,2,0,0,1,1,2,1,0,0,1,1,2,5,0,0,0,1,1,2,5,6,0,
%T A052154 0,0,1,1,2,5,14,6,0,0,0,1,1,2,5,14,26,4,0,0,0,1,1,2,5,14,42,44,1,0,0,
%U A052154 0,1,1,2,5,14,42,100,69,0,0,0,0
%N A052154 Array read by antidiagonals: a(n,k)= coefficient of z^n of p_k(z), where p_k+1(z)=(p_k(z))^2+z, p_1(z)=z.
%C A052154 a(n,k+1)=a(n,k), n<=k; a(n,n)=A000108. Note that the set {z: limit(p_k(z),k->infinity) not=infinity} of complex numbers defines the Mandelbrot set.
%H A052154 R. P. Munafo, <a href="http://www.mrob.com/pub/muency.html">Mu-Ency - The Encyclopedia of the Mandelbrot Set</a>
%H A052154 Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MandelbrotSet.html">Mandelbrot Set</a>
%H A052154 R. Munafo, <a href="http://www.mrob.com/pub/math/seq-a052154.html">Coefficients of Lemniscates for Mandelbrot Set</a>
%F A052154 a(n, k+1)=sum(a(i, k)*a(n-i, k), i=1..n-1) for n=2..2^k, a(1, k)=1, a(n, k+1)=0 for n>2^k.
%e A052154 p_1(z)=z: coefficient = 1 = a(1,1); p_2(z)=z^2+z: coefficients = 1, 1 = a(1,2), a(2,2); p_3(z)=(z^2+z)^2+z=z+z^2+2z^3+z^4: coefficients = 1,1,2,1 = (1,3), a(2,3), a(3,3), a(4,3); ...
%Y A052154 Cf. A000108.
%Y A052154 Cf. A137560, which gives the same array read by rows. [From Robert Munafo (mrob27(AT)gmail.com), Dec 12 2009]
%K A052154 nice,nonn,tabl,easy
%O A052154 1,13
%A A052154 Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 24 2000
%I A054392
%S A054392 1,1,2,5,14,42,131,418,1352,4410,14463,47605,157084,519255,1718653,
%T A054392 5693903,18877509,62620857,207816230,689899944,2290913666,7608939443,
%U A054392 25276349558,83977959853,279039638062,927272169336,3081641953082
%N A054392 Number of permutations with certain forbidden subsequences.
%C A054392 Apparently the Motzkin transform of A005251, after A005251(0) is set to 1. [From R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Dec 11 2008]
%D A054392 E. Barcucci et al., From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
%Y A054392 Interpolates between Motzkin numbers (A001006) and Catalan numbers (A000108). Cf. A005773, A054391-A054394.
%K A054392 nonn
%O A054392 0,3
%A A054392 N. J. A. Sloane (njas(AT)research.att.com), Elisa Pergola (elisa(AT)dsi.unifi.it), May 21 2000
%I A054394
%S A054394 1,1,2,5,14,42,132,429,1429,4847,16660,57820,202086,709928,2503266,
%T A054394 8850681,31355020,111242127,395091069,1404332528,4994581900,
%U A054394 17771328588,63253477326,225194224134,801884971816,2855809269782,10171707099565
%N A054394 Number of permutations with certain forbidden subsequences.
%D A054394 E. Barcucci et al., From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
%F A054394 Conjecture: g.f.(x)=1+z*(1-2z+z^2-z^3)/(1-3z+3z^2-3z^3+2z^4-z^5) where z=x*A001006(x) and A001006(x) is the g.f. of A001006. [From R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 07 2009]
%Y A054394 Interpolates between Motzkin numbers (A001006) and Catalan numbers (A000108). Cf. A005773, A054391-A054393.
%K A054394 nonn
%O A054394 0,3
%A A054394 N. J. A. Sloane (njas(AT)research.att.com), Elisa Pergola (elisa(AT)dsi.unifi.it), May 21 2000
%I A060795
%S A060795 1,2,5,14,42,165,714,3094,14858,79534,447051,2714690,17395070,
%T A060795 114371070,783152070,5708587335,43848093003,342444658094,
%U A060795 2803119896185,23619540863730,201813981102615,1793779293633437,16342050964565645
%N A060795 Write product of first n primes as x*y with x<y and x maximal; sequence gives value of x.
%C A060795 Or, lower central divisor of n-th primorial.
%F A060795 a(n)=A060775[A002110(n)] - Labos E. (labos(AT)ana.sote.hu), Apr 27 2001
%e A060795 n=8: q(8)=2.3.5.7.11.13.17.19=9699690. Its 128-th and 129-th divisors are {3094,3135}: a(8)=3094 and 3094 < A000196(9699690)=3114<3135. [Corrected by Colin Barker, Oct 22 2010]
%e A060795 2*3*5*7 = 210 = 14*15 with difference of 1, so a(4) = 14.
%Y A060795 Cf. A061055-A061060, A061030-A061033.
%Y A060795 Cf. A060755, A000196, A033677.
%K A060795 nonn
%O A060795 1,2
%A A060795 Labos E. (labos(AT)ana.sote.hu), Apr 27 2001
%E A060795 More terms from Ed Pegg Jr (ed(AT)mathpuzzle.com), May 28 2001
%E A060795 Terms 16 through 37 computed by Jud McCranie (JudMcCranie(AT)ugaalum.uga.edu) Apr 15 2000.
%I A126567
%S A126567 1,2,5,14,42,132,430,1444,4981,17594,63441,232806,866870,3266460,
%T A126567 12426210,47629020,183638729,711285170,2764753405,10775740030,
%U A126567 42086252770,164635420788,644811687734,2527808259668,9916569410301
%N A126567 Sequence generated from the E6 Cartan matrix.
%H A126567 Wikipedia, <a href="http://en.wikipedia.org/wiki/E6_%28mathematics%29">E6, Mathematics</a>.
%F A126567 Let M denote the E6 Cartan matrix [2,-1,0,0,0,0; -1,2,-1,0,0,0; 0,-1,2,-1,0,-1; 0,0,-1,2,-1,0; 0,0,0,-1,2,0; 0,0,-1,0,0,2]. a(n) = leftmost term in M^n * [1,0,0,0,0,0].
%e A126567 a(6) = 430 since leftmost term of M^6 * [1,0,0,0,0,0] = 430.
%t A126567 f[n_] := (MatrixPower[{{2, -1, 0, 0, 0, 0}, {-1, 2, -1, 0, 0, 0}, {0, -1, 2, -1, 0, -1}, {0, 0, -1, 2, -1, 0}, {0, 0, 0, -1, 2, 0}, {0, 0, -1, 0, 0, 2}}, n].{1, 0, 0, 0, 0, 0})[[1]]; Table[ f@n, {n, 0, 25}] - Robert G. Wilson v (rgwv(AT)rgwv.com), Aug 07 2007
%Y A126567 Cf. A126566, A126568, A126569.
%K A126567 nonn
%O A126567 0,2
%A A126567 Gary W. Adamson (qntmpkt(AT)yahoo.com), Dec 28 2006
%E A126567 More terms from Robert G. Wilson v (rgwv(AT)rgwv.com), Aug 07 2007
%I A155050
%S A155050 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,2,5,2,1,1,1,1,2,5,5,2,
%T A155050 1,1,1,1,2,5,14,5,2,1,1,1,1,2,5,14,14,5,2,1,1,1,1,2,5,14,42,14,5,2,1,
%U A155050 1,1,1,2,5,14,42,42,14,5,2,1,1,1,1,2,5,14,42,132,42,14,5,2,1,1
%N A155050 A symmetric Catalan based triangle.
%C A155050 Central coefficients are A000108. Row sums are A155051.
%C A155050 Image under Riordan array ((1+x)/(1-x),x)^{-1} is A155052.
%F A155050 Number triangle T(n,k)=sum{j=0..n, [j<=k]*[j<=n-k]*(ct(j+1)-ct(j))} where ct(n):=if(n=0,0,A000108(n-1)).
%e A155050 Triangle begins
%e A155050 1,
%e A155050 1, 1,
%e A155050 1, 1, 1,
%e A155050 1, 1, 1, 1,
%e A155050 1, 1, 2, 1, 1,
%e A155050 1, 1, 2, 2, 1, 1,
%e A155050 1, 1, 2, 5, 2, 1, 1,
%e A155050 1, 1, 2, 5, 5, 2, 1, 1,
%e A155050 1, 1, 2, 5, 14, 5, 2, 1, 1,
%e A155050 1, 1, 2, 5, 14, 14, 5, 2, 1, 1,
%e A155050 1, 1, 2, 5, 14, 42, 14, 5, 2, 1, 1
%K A155050 easy,nonn,tabl
%O A155050 0,13
%A A155050 Paul Barry (pbarry(AT)wit.ie), Jan 19 2009
%I A057413
%S A057413 1,2,5,14,42,132,430,1442,4956,17400,62251,226506,836911,3136182,
%T A057413 11906908,45761338,177903128,699167112,2776219871,11132523840,
%U A057413 45062497156,184057276510,758328417263,3150593560374,13195743501195
%N A057413 Number of staircase polygons of perimeter 2n with any number of (staircase polygon) holes on square lattice (not allowing rotations).
%H A057413 I. Jensen, <a href="/A057413/b057413.txt">Table of n, a(n) for n = 1..51</a> (from link below)
%H A057413 I. Jensen, <a href="http://www.ms.unimelb.edu.au/~iwan/polygons/series/staircase.perim.allholes.ser">More terms</a>
%K A057413 nonn
%O A057413 2,2
%A A057413 N. J. A. Sloane (njas(AT)research.att.com), Aug 30 2000
%I A061815
%S A061815 1,1,2,5,14,42,133,433,1455,4958,17247,60502,215353,770865,2789365,
%T A061815 10134529,37130526,136451349,504837219,1872121732,6980767968,
%U A061815 26078614284,97872756530,367861581953,1388061197005,5243972732886
%N A061815 G.f. A(x) satisfies A(x) = 1+Sum_{j=0 to infinity} ((1 + x^(j+1)*A(x))^a_j-1).
%Y A061815 Cf. A061396.
%K A061815 nonn
%O A061815 0,3
%A A061815 Vladeta Jovovic (vladeta(AT)eunet.rs), Jun 22 2001
%I A063545
%S A063545 1,2,5,14,42,150,780,4550
%N A063545 Largest number of triangulations of n points in the plane.
%D A063545 F. Santos and R. Seidel, A better upper bound on the number of triangulations of a planar point set, J. Combin. Theory, A 102 (2003), 186-193.
%H A063545 O. Aichholzer and H. Krasser, <a href="http://www.ist.tugraz.at/publications/oaich/psfiles/ak-psotd-01.ps.gz">The point set order type data base: a collection of applications and results</a>, pp. 17-20 in Abstracts 13-th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
%Y A063545 Cf. A063544.
%K A063545 nonn,nice,hard
%O A063545 3,2
%A A063545 N. J. A. Sloane (njas(AT)research.att.com), Aug 14 2001
%I A101489
%S A101489 1,1,1,1,1,1,1,1,2,2,1,1,2,4,4,1,1,2,5,10,10,1,1,2,5,13,26,26,1,1,2,5,
%T A101489 14,37,73,73,1,1,2,5,14,41,109,213,213,1,1,2,5,14,42,126,334,645,645,
%U A101489 1,1,2,5,14,42,131,398,1050,2007,2007,1,1,2,5,14,42,132,422,1289,3377
%N A101489 Square array T(n,k), read by antidiagonals: number of binary trees, with n nodes that have no label greater than k.
%H A101489 M. Bousquet-Melou, <a href="http://arXiv.org/abs/math.CO/0501266">Limit laws for embedded trees</a>
%F A101489 G.f. of k-th row: A(t)=B(t)*(1-C(t)^(k+2))*(1-C(t)^(k+7))/[(1-C(t)^(k+4))*(1-C(t)^(k+5))], with B(t) the g.f. of A000108 and C(t) the g.f. of A101490.
%e A101489 1,1,1,2,4,10,26,73,213,645,
%e A101489 1,1,2,4,10,26,73,213,645,2007,
%e A101489 1,1,2,5,13,37,109,334,1050,3377,
%e A101489 1,1,2,5,14,41,126,398,1289,4253,
%e A101489 1,1,2,5,14,42,131,422,1390,4664,
%e A101489 1,1,2,5,14,42,132,428,1422,4812,
%e A101489 1,1,2,5,14,42,132,429,1429,4853,
%e A101489 1,1,2,5,14,42,132,429,1430,4861,
%Y A101489 Rows converge to A000108. First row is A101488.
%K A101489 nonn,tabl
%O A101489 0,9
%A A101489 Ralf Stephan, Jan 21 2005
%I A122881
%S A122881 1,1,2,1,2,5,1,2,5,13,1,2,5,14,34,1,2,5,14,42,89,1,2,5,14,42,131,233,
%T A122881 1,2,5,14,42,132,417,610,1,2,5,14,42,132,429,1341,1597,1,2,5,14,42,
%U A122881 132,429,1429,4334,4181
%N A122881 Triangle read by rows: number of Catalan paths of 2n steps of all values less than or equal to m.
%C A122881 Convergents of k-th diagonals relate to (2k+3)-Polygons; e.g. right border relates to the Pentagon (N=5), next border relates to the Heptagon.(N=7). Convergents of the diagonals are 2 + 2Cos 2Pi/N and are roots to Morgan-Voyce polynomials. k2 diagonal = A080937, number of Catalan paths of 2n steps of all values less than or equal to 5. k3 diagonal = A080938, number of Catalan paths of 2n steps of all values less than or equal to 7.
%F A122881 Begin with polygonal matrices of the form (exemplified by the Heptagonal matrix M3: [1, 1, 1; 1, 1, 0; 1, 0, 0]). Let matrix P3 = 1 / M3^2; then for n X n matrices P2, P3, P4...perform P^n * [1, 0, 0] letting this vector = k-th diagonal of the triangle.
%e A122881 For the right border, odd indexed Fibonacci numbers (1, 2, 5, 13, 34...), we begin with (M2) = [1, 1; 1, 0], then P2 = [1, -1; -1, 2] = 1/(M2)^2. Performing (P2)^n * [1,0] we extract the left vector (1, 2, 5, 13...), making it the right border of the triangle, k1 diagonal.
%e A122881 For the next diagonal going to the left, we begin with the Heptagonal matrix M3 = [1, 1, 1; 1, 1, 0; 1, 0, 0], take the inverse square (P3) and then perform the analogous operation getting 1, 2, 5, 14, 42...
%e A122881 First few rows of the triangle are:
%e A122881 1;
%e A122881 1, 2;
%e A122881 1, 2, 5;
%e A122881 1, 2, 5, 13;
%e A122881 1, 2, 5, 14, 34;
%e A122881 1, 2, 5, 14, 42, 89;
%e A122881 1, 2, 5, 14, 42, 131, 233;
%e A122881 1, 2, 5, 14, 42, 132, 417, 610;
%e A122881 ...
%Y A122881 Cf. A112880, A001519, A000108, A080937, A080938.
%K A122881 nonn,tabl
%O A122881 1,3
%A A122881 Gary W. Adamson (qntmpkt(AT)yahoo.com), Sep 16 2006
%I A132833
%S A132833 1,2,5,14,42,126,377,1130,3390,10170,30509,91526,274577,823730,
%T A132833 2471190,7413570,22240710,66722130,200166390,600499170,1801497510,
%U A132833 5404492530,16213477590,48640432770,145921298310,437763894930,1313291684789
%N A132833 Largest terms a(n) forming a self-convolution of an integer sequence (A132834) such that: a(n) <= 3*a(n-1) for n>0 with a(0)=1.
%o A132833 (PARI) {a(n)=local(B=[1]);if(n==0,1,for(k=1,n,t=3*a(k-1);B=concat(B,t); B[ #B]=t+1-denominator(Vec(Ser(B)^(1/2))[ #B]) ));B[n+1]}
%Y A132833 Cf. A132834 (square-root); A132831 (variant).
%K A132833 nonn
%O A132833 0,2
%A A132833 Paul D. Hanna (pauldhanna(AT)juno.com), Sep 07 2007
%I A162746
%S A162746 1,2,5,14,42,132,427,1402,4629,15290,50412,165816,544253,1783602,
%T A162746 5839313,19106766,62504002,204457540,668825279,2188016442,7158417217,
%U A162746 23421034442,76632061852,250740203864,820430583305,2684486330562
%N A162746 Row sums of Fibonacci-Pascal matrix A162745.
%C A162746 Second binomial transform of aerated Fibonacci numbers. Hankel transform is 1,1,1,-1,0,0,0,\ldots.
%F A162746 G.f.: (1-2x)^3/(1-8x+23x^2-28x^3+11x^4);
%F A162746 a(n)=sum{k=0..floor(n/2), C(n,2k)*2^(n-2k)*F(k+1)}=sum{k=0..n, C(n,k)*2^(n-k)*F(k/2+1)*(1+(-1)^k)/2}.
%K A162746 easy,nonn
%O A162746 0,2
%A A162746 Paul Barry (pbarry(AT)wit.ie), Jul 12 2009
%I A162748
%S A162748 1,2,5,14,42,132,430,1444,4984,17648,64024,237712,902416,3499680,
%T A162748 13853424,55931168,230142848,964460288,4113656704,17846729984,
%U A162748 78708574976,352678567424,1604739694848,7411167960576,34723660917760
%N A162748 Row sums of factorial-Pascal matrix A162747.
%C A162748 Second binomial transform of aerated factorial numbers. Binomial transform of A084261. Hankel transform is A137704.
%F A162748 G.f.: 1/(1-2x-x^2/(1-2x-x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-3x^2/(1-2x-3x^2/(1-2x-4x^2/(1-2x-... (continued fraction);
%F A162748 a(n)=sum{k=0..floor(n/2), C(n,2k)*2^(n-2k)*F(k+1)}=sum{k=0..n, C(n,k)*2^(n-k)*(k/2)!*(1+(-1)^k)/2}.
%F A162748 a(n)=sum{k=0..n, A161556(n,k)*2^k}. [From Paul Barry (pbarry(AT)wit.ie), Apr 11 2010]
%e A162748 E.g.f.: exp(2x)*(1+(sqrt(pi)/2)*x*exp(x^2/4)*erf(x/2)). [From Paul Barry (pbarry(AT)wit.ie), Sep 17 2010]
%K A162748 easy,nonn
%O A162748 0,2
%A A162748 Paul Barry (pbarry(AT)wit.ie), Jul 12 2009
%I A000751
%S A000751 1,2,5,14,42,143,555,2485,12649,72463,461207,3229622,24671899,
%T A000751 204185616,1819837153,17378165240,177012514388,1915724368181,
%U A000751 21952583954117,265533531724484,3380877926676504,45199008472762756
%N A000751 Boustrophedon transform of partition numbers.
%H A000751 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon on transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://www.research.att.com/~njas/doc/bous.txt">Abstract</a>, <a href="http://www.research.att.com/~njas/doc/bous.pdf">pdf</a>, <a href="http://www.research.att.com/~njas/doc/bous.ps">ps</a>).
%H A000751 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A000751 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%K A000751 nonn
%O A000751 0,2
%A A000751 N. J. A. Sloane (njas(AT)research.att.com).
%I A006930
%S A006930 1,2,5,14,42,131,420,1376,4589,15537,53293,184881,647752,2289215,
%T A006930 8152147,29226618,105408688,382193502,1392377762,5094356032,
%U A006930 18711122069,68965586862,255006331944,945662753514
%N A006930 Binomial transform of rooted tree numbers.
%H A006930 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H A006930 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%Y A006930 Cf. A000081.
%K A006930 nonn
%O A006930 0,2
%A A006930 N. J. A. Sloane (njas(AT)research.att.com).
%I A036767
%S A036767 1,1,2,5,14,42,131,421,1385,4642,15795,54418,189454,665471,2355510,
%T A036767 8393461,30084695,108394449,392356788,1426137550,5203211200,
%U A036767 19048447855,69951072700,257609070810,951172531880,3520465229446,13058843476526
%N A036767 Number of rooted trees with a degree constraint.
%C A036767 Empirical: number of Dyck n-paths avoiding UUUUUU (or DDDDDD). e.g. of the 132 Dyck 6-paths U^6D^6 contains UUUUUU so a(6)=131. [From David Scambler, Mar 24 2011]
%D A036767 L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (6).
%H A036767 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H A036767 Vladimir Kruchinin, <a href="http://arxiv.org/abs/1103.2582"> Compositae and their properties </a>, arXiv:1103.2582
%F A036767 G.f. A(x) satisfies A(x)=1+sum(n=1..5, (x*A(x))^n) [From Vladimir Kruchinin, Feb 22 2011].
%p A036767 r := 5; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ]; end;
%o A036767 (PARI) a(n)=if(n<0,0,polcoeff(serreverse(x/sum(k=0,5,x^k)+O(x^(n+2))),n+1)) (from R. Stephan)
%K A036767 nonn
%O A036767 0,3
%A A036767 N. J. A. Sloane (njas(AT)research.att.com).
%I A036768
%S A036768 1,1,2,5,14,42,132,428,1421,4807,16510,57421,201824,715768,2558167,
%T A036768 9204651,33315919,121218195,443107245,1626546453,5993256280,
%U A036768 22158739970,82182744284,305670888560,1139892935454,4261095044346,15964169665031
%N A036768 Number of rooted trees with a degree constraint.
%D A036768 L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (6).
%H A036768 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H A036768 Vladimir Kruchinin, <a href="http://arxiv.org/abs/1103.2582"> Compositae and their properties </a>, arXiv:1103.2582
%F A036768 G.f. A(x) satisfies A(x)=1+sum(n=1..6, (x*A(x))^n) [From Vladimir Kruchinin, Feb 22 2011].
%p A036768 r := 6; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ]; end;
%o A036768 (PARI) a(n)=if(n<0,0,polcoeff(serreverse(x/polcyclo(7)+O(x^(n+2))),n+1)) (from R. Stephan)
%K A036768 nonn
%O A036768 0,3
%A A036768 N. J. A. Sloane (njas(AT)research.att.com).
%I A047046
%S A047046 1,2,5,14,42,146,513,1814,6457,23852,88822,331756,1241569,4704536,
%T A047046 17919729,68426280,261659138,1005583928,3876858984,14975423376,
%U A047046 57918225459,224542599510,872234912198,3393031324338,13212674724177
%N A047046 T(n,n+1), array T as in A047040; T(n+1,n), array T given by A047050.
%K A047046 nonn
%O A047046 0,2
%A A047046 Clark Kimberling (ck6(AT)evansville.edu)
%I A052853
%S A052853 0,1,2,5,14,42,138,466,1643,5919,21773,81279,307483,1175352,4534161,
%T A052853 17626999,68992703,271641249,1075144364,4275274867,17071822275
%N A052853 A simple grammar.
%H A052853 INRIA Algorithms Project, <a href="http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=821">Encyclopedia of Combinatorial Structures 821</a>
%p A052853 spec := [S,{C=Prod(Z,B),S=Cycle(C),B=Set(S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
%K A052853 easy,nonn
%O A052853 0,3
%A A052853 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%I A061058
%S A061058 1,2,5,14,42,165,714,3094,14858,79534,447051,2714690,17395070
%N A061058 Duplicate of A060795.
%K A061058 dead
%O A061058 1,2
%I A092493
%S A092493 1,2,5,14,42,128,389,1179,3572,10825,32810,99446,301412,913547,
%T A092493 2768863,8392136,25435699,77092976,233660832,708201794,2146486339,
%U A092493 6505777953,19718339694,59764246943,181139247400,549014312524,1664005563066
%N A092493 a(n)=4a(n-1)-4a(n-2)+3a(n-3)+a(n-4)-a(n-5).
%C A092493 Arises in enumeration of certain pattern-avoiding permutations.
%D A092493 Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
%F A092493 G.f.: x*(1-2*x+x^2-x^3-x^4)/(1-4*x+4*x^2-3*x^3-x^4+x^5) [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009]
%p A092493 a[1]:=1: a[2]:=2: a[3]:=5: a[4]:=14: a[5]:=42: for n from 6 to 32 do a[n]:=4*a[n-1]-4*a[n-2]+3*a[n-3]+a[n-4]-a[n-5] od: seq(a[j],j=1..32); (Deutsch)
%Y A092493 Cf. A058094, A092489-A092492.
%K A092493 nonn,easy
%O A092493 1,2
%A A092493 N. J. A. Sloane (njas(AT)research.att.com), Apr 04 2004
%E A092493 G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
%E A092493 Edited by Emeric Deutsch (deutsch(AT)duke.poly.edu), Apr 12 2005
%I A125501
%S A125501 1,2,5,14,42,132,430,1444,4981,17594,63442,232828,867145,3269034,
%T A125501 12446307,47767466,184508963,716386598,2793067210,10926148172,
%U A125501 42857189054,168471757292,663434825367,2616336659586,10329939578230
%N A125501 The (1,1)-entry in the matrix M^n, where M is the 7 X 7 Cartan matrix [2,-1,0,0,0,0,0; -1,2,-1,0,0,0,0; 0,-1,2,-1,0,0,-1; 0,0,-1,2,-1,0,0; 0,0,0,-1,2,-1,0; 0,0,0,0,-1,2,0; 0,0,-1,0,0,0,2].
%D A125501 Wikipedia (E_7, Mathematics).
%e A125501 a(6) = 430 = leftmost term in M^6 * [1,0,0,0,0,0,0].
%p A125501 with(linalg): M[1]:=matrix(7,7,[2,-1,0,0,0,0,0,-1,2,-1,0,0,0,0,0,-1,2,-1,0,0,-1,0,0,-1,2,-1,0,0,0,0,0,-1,2,-1,0,0,0,0,0,-1,2,0,0,0,-1,0,0,0,2]): for n from 2 to 30 do M[n]:=multiply(M[1],M[n-1]) od:1, seq(M[n][1,1],n=1..30); - Emeric Deutsch (deutsch(AT)duke.poly.edu), Jan 20 2007
%o A125501 (PARI) {a(n)=local(E7=[2,-1,0,0,0,0,0; -1,2,-1,0,0,0,0; 0,-1,2,-1,0,0,-1; 0,0,-1,2,-1,0,0; 0,0,0,-1,2,-1,0; 0,0,0,0,-1,2,0; 0,0,-1,0,0,0,2]); (E7^n)[1,1]} - Paul D. Hanna (pauldhanna(AT)juno.com), Jan 02 2007
%Y A125501 Cf. A126566, A126567, A126569.
%K A125501 nonn
%O A125501 0,2
%A A125501 Gary W. Adamson (qntmpkt(AT)yahoo.com), Dec 28 2006
%E A125501 More terms from Paul D. Hanna (pauldhanna(AT)juno.com), Jan 02 2007
%I A129086
%S A129086 1,2,5,14,42,133,443,1552,5716,22068,88830,370209,1585841,6936459,
%T A129086 30813483,138445492,627256282,2859652414,13099023380,60225071992,
%U A129086 277729496928,1283986487874,5948991719082,27616185153765
%N A129086 Coefficients of solution to A(x)= (1 +x*A(x)^2)* (1-3*x)/ (1-2*x)^2.
%F A129086 Hankel transform of a(n) is A006720(n+3).
%F A129086 G.f. A(x) satisfies 0= f(x, A(x)) where f(u, v)= (v-1) +(3 -4*v -v^2)*u +(4*v +3*v^2)* u^2.
%F A129086 Let s(n)= A006769(n). Then 0= f( s(n+4)* s(n+6)/( s(n)* s(n+10)), -s(n)* s(n+7)/( s(n+3)* s(n+4)) ) where f(u, v)= (v-1) +(3 -4*v -v^2)*u +(4*v +3*v^2)* u^2.
%F A129086 G.f.: ((1 -2*x)^2 -sqrt((1 -4*x)* (1 -8*x +16*x^2 -4*x^3) ))/(2*x* (1 -3*x)).
%o A129086 (PARI) {a(n)= if(n<0, 0, polcoeff( ((1 -2*x)^2 -sqrt((1 -4*x)* (1 -8*x +16*x^2 -4*x^3) +x^2*O(x^n))) /(2*x* (1 -3*x)), n))}
%o A129086 (PARI) {a(n)= local(A); if(n<0, 0, A= 1+O(x); for(k= 1, n, A= (1+x*A^2)* (1-3*x)/ (1-2*x)^2 ); polcoeff(A, n))}
%K A129086 nonn
%O A129086 0,2
%A A129086 Michael Somos, Mar 29 2007
%I A137940
%S A137940 1,1,1,1,2,1,1,2,4,1,1,2,5,7,1,1,2,5,13,11,1,1,2,5,14,31,16,1,1,2,5,
%T A137940 14,41,66,22,1,1,2,5,14,42,116,127,29,1,1,2,5,14,42,131,302,225,37,1,
%U A137940 1,2,5,14,42,132,407,715,373,46,1,1,2,5,14,42,132
%N A137940 Triangle read by rows, antidiagonals of an array formed by A000012 * A001263(transform).
%C A137940 Rows of the array tend to the Catalan sequence, A000108 starting (1, 2, 5, 14, 42,...).
%F A137940 Antidiagonals of an array formed by A000012 * A001263(transform), as infinite triangular matrices. A000012 = (1; 1,1; 1,1,1; 1,1,1,1;...), A001263 = the Narayana triangle.
%e A137940 First few rows of the array are:
%e A137940 1,...1,....1,....1,....1,...
%e A137940 1,...2,....4,....7,...11,...
%e A137940 1,...2,....5,...13,...31,...
%e A137940 1,...2,....5,...14,...41,...
%e A137940 1,...2,....5,...14,...42,...
%e A137940 ...
%e A137940 First few rows of the triangle are:
%e A137940 1;
%e A137940 1, 1;
%e A137940 1, 2, 1;
%e A137940 1, 2, 4, 1;
%e A137940 1, 2, 5, 7, 1;
%e A137940 1, 2, 5, 13, 11, 1;
%e A137940 1, 2, 5, 14, 31, 16, 1;
%e A137940 1, 2, 5, 14, 41, 66, 22, 1;
%e A137940 1, 2, 5, 14, 42, 116, 127, 29, 1;
%e A137940 1, 2, 5, 14, 42, 131, 302, 225, 37, 1;
%e A137940 1, 2, 5, 14, 42, 132, 407, 715, 373, 46, 1;
%e A137940 ...
%Y A137940 Cf. A001263, A000108.
%K A137940 nonn,tabl
%O A137940 1,5
%A A137940 Gary W. Adamson (qntmpkt(AT)yahoo.com), Feb 24 2008
%I A148326
%S A148326 1,1,2,5,14,42,127,406,1384,4674,16231,57908,207172,759480,2799649,
%T A148326 10388278,39267427,148491557,566578382,2183452049,8421213079,
%U A148326 32796434160,128237720641,502717621685,1986380784640,7859822136004,31232721688184,124731244842505,498653956893148,2003101284597936
%N A148326 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, -1), (0, -1, 0), (0, 0, 1), (1, 1, -1)}
%H A148326 A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t A148326 aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[i, 1 + j, k, -1 + n] + aux[1 + i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K A148326 nonn,walk
%O A148326 0,3
%A A148326 Manuel Kauers (manuel(AT)kauers.de), Nov 18 2008
%I A148327
%S A148327 1,1,2,5,14,42,127,422,1435,4840,17338,62435,225190,837159,3126319,
%T A148327 11765631,44783683,171773846,664157911,2575562439,10077583703,
%U A148327 39670893129,156317183566,620651825974,2475390947605,9886472711813,39689896106424,159948432742012,645894452400153,2616112922938863
%N A148327 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, -1), (0, 0, 1), (1, -1, 0), (1, 1, -1)}
%H A148327 A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t A148327 aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K A148327 nonn,walk
%O A148327 0,3
%A A148327 Manuel Kauers (manuel(AT)kauers.de), Nov 18 2008
%I A148328
%S A148328 1,1,2,5,14,42,130,415,1365,4592,15727,54593,191610,679420,2430721,
%T A148328 8763775,31807636,116106836,426029867,1570602958,5814799002,
%U A148328 21610381589,80590043893,301484592756,1131111868525,4255026611884,16045919249512,60646837901675,229700320188818,871691280039250,3314013545656012
%N A148328 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, 0, 1), (1, -1, 0), (1, 1, -1)}
%H A148328 A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t A148328 aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K A148328 nonn,walk
%O A148328 0,3
%A A148328 Manuel Kauers (manuel(AT)kauers.de), Nov 18 2008