-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtodorov.py
132 lines (111 loc) · 3.57 KB
/
todorov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# author: A. Pezzotta -- pezzota [AT] crick.ac.uk
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from fpt import meanFPT
from solvers import directSolve
# cost parameters
q = 1. # cost per jump
eps = 1. # weight of KL
tradeoff = q/eps # only thing that matters
basename = "%.2f_whaleshark"%(tradeoff)
#
# define from NX graph
#
print("Loading NetworkX graph")
G = nx.read_graphml("v_graph_9Oct2020.graphml")
isolates = list(nx.isolates(G))
print("Removing isolated nodes: ", isolates)
G.remove_nodes_from(isolates)
print("Extracting adjacency matrix")
adj = np.squeeze(np.asarray(nx.adjacency_matrix(G).todense()))
N = G.number_of_nodes()
print("%d nodes"%N)
end = np.sort(np.unique(
[ 434, 3229, 3895, 4424, 4512, 5139, 5551, 5657, 5696,
5995, 6818, 7439, 7852, 8389, 9100, 9407, 9749, 9809,
9825, 10028, 10722, 10969, 10979, 11087, 11421, 11455, 11569,
11584, 11599, 11754, 11955, 12124, 12388, 12663, 12670, 12920,
12995, 13172, 13410, 13824, 13869, 13963, 14594, 15101, 15196,
15605, 15623, 15711, 16377, 16490, 16580, 16914, 16968, 16982,
17130, 17141, 17197, 17294, 17296, 17499, 18183, 18603, 18787,
19230, 19596, 19937, 19963, 20038, 20085, 20273, 20310, 20433,
20515, 20527, 20644, 20935, 21013]))
# uncontrolled transition probability
# transitions from a given node have equal probabilities
print("Define random walk on graph")
p = adj.copy().astype(float)
for k in range(N):
p[:,k] /= np.sum(p[:,k]) # normalize each column
# "end" nodes are absorbing
for term in end:
p[:,term] = 0.
p[term,term] = 1.
# objective function parameters
print("Setting up tilted generator")
print("\tcost per jump: ", q)
print("\tweight for KL: ", eps)
pt = p.copy()
for k in range(N):
if not k in end:
pt[:,k] *= np.exp(-tradeoff)
# solve for desirability (at non-absorbing states)
print("Solving for the desirability")
Z = directSolve(pt, end, method='lsqr') # solve linear problem
# controlled transition probability
print("Define controlled transition probabilities")
u = pt.copy()
for kp in range(N):
u[kp] *= Z[kp]
for k in range(N):
u[:,k] /= Z[k]
# test solution:
print("\nRun checks...")
correct = np.allclose(np.dot(pt.T, Z), Z, rtol=.0001)
normlzd = np.allclose(np.sum(u,axis=0), 1, rtol=.001)
print("correct solution: ", correct)
print("u correctly normalized: ", normlzd)
if not correct:
print("\tmax error: ", np.max(Z - np.dot(pt.T, Z)))
exit()
if not normlzd:
print("\tmax error: ", np.max(np.sum(u,axis=0) - np.ones(N)))
exit()
print("")
# create graph from (weighted) edges -- tr. pr. matrix
print("Create graph")
G=nx.Graph()
G = nx.from_numpy_matrix(np.asmatrix(u))
Zdict = dict([x for x in zip(range(len(Z)), Z)])
nx.set_node_attributes(G, Zdict, 'desirability')
filename = basename+".graphml"
print("\tSaving graph in markdown: ", filename)
nx.write_graphml(G, filename)
exit()
#
# PLOTS
#
print("Plot results")
fig, ax = plt.subplots(2,2, figsize=(8,8))
plt.sca(ax[0,0])
ax[0,0].set_title("Adjacency matrix")
f = ax[0,0].imshow(adj)
# fig.colorbar(f, ax=ax[0,0])
plt.sca(ax[0,1])
ax[0,1].set_title("Graph")
pos = nx.spring_layout(G, iterations=50)
nx.draw(G, pos, node_color=np.log(Z), node_size=80, cmap=plt.cm.Spectral, with_labels=True, font_size=6)
plt.sca(ax[1,0])
ax[1,0].set_title("Reference tr. prob.")
f = ax[1,0].imshow(p)
# fig.colorbar(f, ax=ax[1,0])
plt.sca(ax[1,1])
ax[1,1].set_title("Optimal tr. prob.")
f = ax[1,1].imshow(u)
# fig.colorbar(f, ax=ax[1,1])
filename = basename+".png"
print("\tSaving figures: ", filename)
plt.savefig(filename)