-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy patheval_pytorch.py
226 lines (194 loc) · 8.95 KB
/
eval_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import print_function, division
import argparse
from datetime import datetime
import os, sys
from os.path import join
import time
import re
import platform
import numpy as np
import torch
from torch import optim
from torch.autograd import Variable
import torch.utils.data as data
import torch.nn.functional as F
import random
# WARNING: if multiple worker threads, the seeds are useless.
random.seed(1857)
torch.manual_seed(1857)
torch.cuda.manual_seed(1857)
from settings import get_arguments
import datasets
from datasets.loadvoc import load_extended_voc
from compose import (JointCompose, RandomScale, Normalize,
RandomHorizontalFlip, RandomCropPad, PILtoTensor, Scale, TensortoPIL)
from PIL.Image import NEAREST
from losses import *
import deepdish as dd
import deeplab_resnet.model_pytorch as modelpy
from collections import defaultdict
import yaml
IGNORE_LABEL = 255
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
def create_variables(weights, cuda=True):
var = dict()
for k, v in weights.items():
v = torch.from_numpy(v)
if cuda:
v = v.cuda()
if not (k.endswith('moving_mean') or k.endswith('moving_variance')):
v = Variable(v)
var[k] = v
return var
def snapshot_variables(weights, dest):
out = {}
for (k, v) in weights.items():
if isinstance(v, Variable):
v = v.data
out[k] = v.cpu().numpy()
dd.io.save(dest, out)
def training_groups(weights, base_lr, multipliers=[0.1, 1.0, 1.0], train_last=-1, hybrid=False): # multipliers=[1.0, 10.0, 20.0]
"""
get training groups and activates requires_grad for variables
train_last: last: only train last ... layers
hybrid: if hybrid, train all layers but set momentum to 0 on last layers
"""
fixed = ['moving_mean', 'moving_variance', 'beta', 'gamma']
# get training variables, with their lr
trained = {k: v for (k, v) in weights.iteritems() if not any([k.endswith(s) for s in fixed])}
for v in trained.values():
v.requires_grad = True
fc_vars = {k: v for (k, v) in trained.iteritems() if 'fc' in k}
conv_vars = [v for (k, v) in trained.items() if 'fc' not in k] # lr * 1.0
fc_w_vars = [v for (k, v) in fc_vars.items() if 'weights' in k] # lr * 10.0
fc_b_vars = [v for (k, v) in fc_vars.items() if 'biases' in k] # lr * 20.0
assert(len(trained) == len(fc_vars) + len(conv_vars))
assert(len(fc_vars) == len(fc_w_vars) + len(fc_b_vars))
if train_last == -1:
print("train all layers")
groups = [{'params': conv_vars, 'lr': multipliers[0] * base_lr},
{'params': fc_w_vars, 'lr': multipliers[1] * base_lr},
{'params': fc_b_vars, 'lr': multipliers[2] * base_lr}]
elif train_last == 1:
print("train last layer only")
for v in conv_vars:
v.requires_grad = False
groups = [{'params': fc_w_vars, 'lr': multipliers[1] * base_lr},
{'params': fc_b_vars, 'lr': multipliers[2] * base_lr}]
return groups
class SegsetWrap(data.Dataset):
def __init__(self, segset, transform=None):
self.name = segset.name
self.segset = segset
self.transform = transform
def __repr__(self):
return "<SegSetWrap '" + self.name + "'>"
def __getitem__(self, i):
inputs = self.segset.read(i, kind="PIL")
if self.transform is not None:
inputs = self.transform(inputs)
return inputs
def __len__(self):
return len(self.segset)
def main(args):
print(os.path.basename(__file__), 'arguments:')
print(yaml.dump(vars(args), default_flow_style=False))
weights = dd.io.load(args.restore_from)
print('Loaded weights from {}'.format(args.restore_from))
weights = create_variables(weights, cuda=True)
forward = lambda input: modelpy.DeepLabResNetModel({'data': input}, weights).layers['fc1_voc12']
train, val, test = load_extended_voc()
input_size = map(int, args.input_size.split(',')) if args.input_size is not None else None
print ('========')
if args.proximal:
assert args.jaccard
if args.binary == -1:
print("Multiclass: loss set to cross-entropy")
lossfn, lossname = crossentropyloss, 'xloss'
otherlossfn = None
else:
print("Binary: loss set to hingeloss")
if args.jaccard:
lossfn, lossname = lovaszloss, 'lovaszloss'
otherlossfn, otherlossname = hingeloss, 'hingeloss'
elif args.softmax:
lossfn, lossname = binaryXloss, 'binxloss'
otherlossfn = None
else:
lossfn, lossname = hingeloss, 'hingeloss'
otherlossfn, otherlossname = lovaszloss, 'lovaszloss'
train, val = train.binarize(args.binary_str), val.binarize(args.binary_str)
# get network output size
dummy_input = torch.rand((1, 3, input_size[0], input_size[1])).cuda()
dummy_out = forward(Variable(dummy_input, volatile=True))
output_size = (dummy_out.size(2), dummy_out.size(3))
transforms_val = JointCompose([PILtoTensor(),
[Normalize(torch.from_numpy(IMG_MEAN)), None],
])
invtransf_val = JointCompose([[Normalize(-torch.from_numpy(IMG_MEAN)), None],
TensortoPIL( datasets.utils.color_map() ),
])
if args.sampling == 'balanced':
from datasets.balanced_val import balanced
inds = balanced[args.binary_str]
val.examples = [val[i] for i in inds]
print('Subsampled val. to balanced set of {:d} examples'.format(len(val)))
elif args.sampling == 'exclusive':
val = val[args.binary_str]
print('Subsampled val. to balanced set of {:d} examples'.format(len(val)))
update_every = args.grad_update_every
global_batch_size = args.batch_size * update_every
valset = SegsetWrap(val, transforms_val)
valloader = data.DataLoader(valset,
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=True)
def do_val():
valiter = iter(valloader)
stats = defaultdict(list)
# extract some images spreak evenly in the validation set
tosee = [int(0.05 * i * len(valiter)) for i in range(1, 20)]
for valstep, (inputs, labels) in enumerate(valiter):
start_time = time.time()
inputs, labels = Variable(inputs.cuda(), volatile=True), labels.cuda().long()
logits = forward(inputs)
logits = F.upsample_bilinear(logits, size=labels.size()[1:])
if args.binary == -1:
xloss = crossentropyloss(logits, labels)
stats['xloss'].append(xloss.data[0])
print('[Validation {}-{:d}], xloss {:.5f} - mean {:.5f} ({:.3f} sec/step {})'.format(
step, valstep, xloss, np.mean(stats['xloss']), time.time() - start_time))
# conf, pred = logits.max(1)
else:
conf, multipred = logits.max(1)
multipred = multipred.squeeze(1)
multipred = (multipred == args.binary).long()
imageiou_multi = iouloss(multipred.data.squeeze(0), labels.squeeze(0))
stats['imageiou_multi'].append(imageiou_multi)
logits = logits[:, args.binary, :, :] # select only 1 output
pred = (logits > 0.).long()
# image output
if valstep in tosee:
inputim, inputlab = invtransf_val([inputs.data[0, :, :, :], labels[0, :, :]])
_, predim = invtransf_val([inputs.data[0, :, :, :], pred.data[0, :, :]])
inputim.save("imout/{}_{}in.png".format(args.nickname, valstep),"PNG")
inputlab.save("imout/{}_{}inlab.png".format(args.nickname, valstep),"PNG")
predim.save("imout/{}_{}out.png".format(args.nickname, valstep),"PNG")
imageiou = iouloss(pred.data.squeeze(0), labels.squeeze(0))
stats['imageiou'].append(imageiou)
hloss = hingeloss(logits, labels).data[0]
stats['hingeloss'].append(hloss)
jloss = lovaszloss(logits, labels).data[0]
stats['lovaszloss'].append(jloss)
binxloss = binaryXloss(logits, labels).data[0]
stats['binxloss'].append(binxloss)
print( 'hloss {:.5f} - mean {:.5f}, '.format(hloss, np.mean(stats['hingeloss']))
+ 'lovaszloss {:.5f} - mean {:.5f}, '.format(jloss, np.mean(stats['lovaszloss']))
+ 'iou {:.5f} - mean {:.5f}, '.format(imageiou, np.mean(stats['imageiou']))
+ 'iou_multi {:.5f} - mean {:.5f}, '.format(imageiou_multi, np.mean(stats['imageiou_multi']))
)
do_val()
if __name__ == '__main__':
args = get_arguments(sys.argv[1:], 'train')
main(args)