-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathboat_models.py
422 lines (349 loc) · 17.3 KB
/
boat_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import numpy as np
from pydrake.symbolic import sin, cos
import matplotlib.animation as animation
from matplotlib.patches import Circle, Rectangle
import matplotlib.pyplot as plt
class Boat():
G = 9.8 # gravitational constant
num_states = 6
num_inputs = 4
d11 = 6
d22 = 8
d33 = 0.6
m11 = 12
m22 = 16
m33 = 1.5
width = 0.9
height = 0.45
Q0 = 50
Q1 = 50
Q2 = 5
max_u = 4
def __init__(self, split=False, min_interboat_clearance=0):
self.split = split
self.min_interboat_clearance = min_interboat_clearance
self.min_interboat_distance = ((self.height)**2+(self.width)**2)**0.5 + self.min_interboat_clearance
self.min_interboat_distance_squared = self.min_interboat_distance**2
self.split_min_interboat_distance = ((self.height)**2+(self.width/2)**2)**0.5 + self.min_interboat_clearance
self.split_min_interboat_distance_squared = self.split_min_interboat_distance**2
def toProblemState(self, boats_s):
return boats_s
def toProblemStates(self, boats_S):
return boats_S
def toGlobalStates(self, boats_S, state_initial=None):
return boats_S
@classmethod
def boat_dynamics(cls, s, u):
'''
Calculates the dynamics, i.e.:
\dot{state} = f(state,u)
for the rocket + two planets system.
:param state: numpy array, length 4, comprising state of system:
[x, y, \dot{x}, \dot{y}]
:param u: numpy array, length 2, comprising control input for system:
[\ddot{x}_u, \ddot{y}_u]
Note that this is only the added acceleration, note the total acceleration.
:return: numpy array, length 4, comprising the time derivative of the system state:
[\dot{x}, \dot{y}, \ddot{x}, \ddot{y}]
'''
derivs = np.zeros_like(s)
derivs[0] = cos(s[2]) * s[3] - sin(s[2]) * s[4];
derivs[1] = sin(s[2]) * s[3] + cos(s[2]) * s[4];
derivs[2] = s[5];
derivs[3] = -cls.d11 / cls.m11 * s[3] + u[0] / cls.m11 + u[1] / cls.m11;
derivs[4] = -cls.d22 / cls.m22 * s[4] + u[2] / cls.m22 + u[3] / cls.m22;
derivs[5] = -cls.d33 / cls.m33 * s[5] + cls.width / (2 * cls.m33) * u[0] - cls.width / (2 * cls.m33) * u[1] + cls.height / (2 * cls.m33) * u[2] - cls.height / (2 * cls.m33) * u[3];
return derivs
@classmethod
def passive_boat_dynamics(cls, state):
'''
Caculates the dynamics with no control input, see documentation for boat_dynamics
'''
u = np.zeros(2)
return cls.boat_dynamics(state, u)
@classmethod
def two_norm(cls, x):
'''
Euclidean norm but with a small slack variable to make it nonzero.
This helps the nonlinear solver not end up in a position where
in the dynamics it is dividing by zero.
:param x: numpy array of any length (we only need it for length 2)
:return: numpy.float64
'''
slack = .001
return np.sqrt(((x)**2).sum() + slack)
@classmethod
def simulate_states_over_time(cls, state_initial, time_array, input_trajectory):
'''
Given an initial state, simulates the state of the system.
This uses simple Euler integration. The purpose here of not
using fancier integration is to provide what will be useful reference for
a simple direct transcription trajectory optimization implementation.
The first time of the time_array __is__ the time of the state_initial.
:param state_initial: numpy array of length 4, see boat_dynamics for documentation
:param time_array: numpy array of length N+1 (0, ..., N) whose elements are samples in time, i.e.:
[ t_0,
...
t_N ]
Note the times do not have to be evenly spaced
:param input_trajectory: numpy 2d array of N rows (0, ..., N-1), and 2 columns, corresponding to
the control inputs at each time, except the last time, i.e.:
[ [u_0, u_1],
...
[u_{N-1}, u_{N-1}] ]
:return: numpy 2d array where the rows are samples in time corresponding
to the time_array, and each row is the state at that time, i.e.:
[ [x_0, y_0, \dot{x}_0, \dot{y}_0],
...
[x_N, y_N, \dot{x}_N, \dot{y}_N] ]
'''
states_over_time = np.asarray([state_initial])
for i in range(1,len(time_array)):
time_step = time_array[i] - time_array[i-1]
state_next = states_over_time[-1,:] + time_step*cls.boat_dynamics(states_over_time[-1,:], input_trajectory[i-1,:])
states_over_time = np.vstack((states_over_time, state_next))
return states_over_time
@classmethod
def simulate_states_over_time_passive(cls, state_initial, time_array):
'''
Given an initial state, simulates the state of the system passively
'''
input_trajectory = np.zeros((len(time_array)-1,2))
return cls.simulate_states_over_time(state_initial, time_array, input_trajectory)
@classmethod
def plot_trajectory(cls, trajectory, plot=None, color='black', linestyle='-'):
'''
Given a trajectory, plots this trajectory over time.
:param: trajectory: the output of simulate_states_over_time, or equivalent
Note: see simulate_states_over_time for documentation of the shape of the output
'''
input_trajectory = np.zeros((trajectory.shape[0],2))
cls.plot_trajectory_with_inputs(trajectory, input_trajectory, plot=plot, color=color, linestyle=linestyle)
@classmethod
def plot_trajectory_with_inputs(cls, trajectory, input_trajectory, plot=None, color='black', linestyle='-'):
'''
Given a trajectory and an input_trajectory, plots this trajectory and control inputs over time.
:param: trajectory: the output of simulate_states_over_time, or equivalent
Note: see simulate_states_over_time for documentation of the shape of the output
:param: input_trajectory: the input to simulate_states_over_time, or equivalent
Note: see simulate_states_over_time for documentation of the shape of the input_trajectory
'''
rocket_position_x = trajectory[:,0]
rocket_position_y = trajectory[:,1]
#check if fig, axes already exist
if plot is None:
fig, axes = plt.subplots(nrows=1,ncols=1, figsize=(8,6))
else:
fig, axes = plot
axes.plot(rocket_position_x, rocket_position_y, linewidth='2', color=color, zorder=0, linestyle=linestyle)
axes.axis('equal')
## if we have an input trajectory, plot it
if len(input_trajectory.nonzero()[0]):
# the quiver plot works best with not too many arrows
max_desired_arrows = 40
num_time_steps = input_trajectory.shape[0]
if num_time_steps < max_desired_arrows:
downsample_rate = 1
else:
downsample_rate = num_time_steps / max_desired_arrows
rocket_position_x = rocket_position_x[:-1] # don't need the last state, no control input for it
rocket_position_y = rocket_position_y[:-1]
rocket_booster_x = input_trajectory[::downsample_rate,0]
rocket_booster_y = input_trajectory[::downsample_rate,1]
Q = plt.quiver(rocket_position_x[::downsample_rate], rocket_position_y[::downsample_rate], \
rocket_booster_x, rocket_booster_y, units='width', color="red")
if plot is None:
plt.show()
def plot_configurations(self, boats_S, stride=10):
plot = plt.subplots(nrows=1,ncols=1, figsize=(12,8))
pick = range(0,boats_S.shape[1],stride)
num_display = len(pick)
alphas = np.repeat(np.arange(0,num_display)/float(num_display), len(boats_S))*0.5
self.plot_configuration(np.vstack([boats_S[:,i,:] for i in pick]), border=0, region_fill=False, boat_color='black', alphas=alphas, plot=plot)
self.plot_configuration(boats_S[:,-1,:],region_fill=False, border=0, plot=plot, boat_color='black')
plt.plot()
def plot_x0xN(self, boats_S, alpha0=[0.5], alphaN=[1], plot=None, boat_color0='w', boat_colorN='darkorange', region_color0='0.5', region_colorN='0.2'):
if plot is None:
fig, axs = plt.subplots(nrows=1,ncols=1, figsize=(12,8))
else:
fig, axs = plot
self.plot_configuration(boats_S[:,0], alphas=alpha0, plot=(fig,axs), region_color=region_color0, boat_color=boat_color0)
self.plot_configuration(boats_S[:,-1], alphas=alphaN, plot=(fig,axs), region_color=region_colorN, boat_color=boat_colorN)
if plot is None:
plt.plot()
return fig, axs
def plot_configuration(self, boats_s, alphas=None, show_regions=True, plot=None, region_color='0.2', boat_color='darkorange', border=None, region_fill=True):
if plot is None:
fig, axs = plt.subplots(nrows=1,ncols=1, figsize=(24,16))
split = self.split
else:
fig, axs = plot
axs.set_aspect('equal')
if alphas is None:
alphas = np.ones(len(boats_s))
elif len(alphas)==1:
alphas = alphas[0]*np.ones(len(boats_s))
def patch_pose(pose):
x,y,theta = pose
return (
x - self.width/2*np.cos(theta) + self.height/2*np.sin(theta),
y - self.width/2*np.sin(theta) - self.height/2*np.cos(theta),
theta*180/np.pi
)
def patches_interboat_split(pose):
x,y,theta = pose
return [[x - self.height/2*np.cos(theta), y - self.height/2*np.sin(theta)],
[x + self.height/2*np.cos(theta), y + self.height/2*np.sin(theta)]
]
patches = []
regions = []
for pose,alpha in zip(boats_s,alphas):
if show_regions:
if self.split:
regions.append([Circle(pose[:3], self.split_min_interboat_distance/2, color=region_color, alpha=alpha),
Circle(pose[:3], self.split_min_interboat_distance/2, color=region_color, alpha=alpha)
])
axs.add_patch(regions[-1][0], alpha=alpha)
axs.add_patch(regions[-1][1], alpha=alpha)
else:
regions.append(Circle(pose[:3], self.min_interboat_distance/2, color=region_color, alpha=alpha, linewidth=border, linestyle='solid', edgecolor='0', fill=region_fill))
axs.add_patch(regions[-1])
pose = patch_pose(pose[:3])
patches.append(
Rectangle(
pose[:2],
self.width,
self.height,
pose[2],
alpha=alpha,
color=boat_color
)
)
axs.add_patch(patches[-1])
if plot is None:
plt.plot()
return patches, regions
@classmethod
def plot_trajectories(cls, trajectories, input_trajectories=None, plot=None, color='black', linestyle='-'):
if plot is None:
fig, axs = plt.subplots(nrows=1,ncols=1, figsize=(12,8))
else:
fig, axs = plot
plt.gca().set_prop_cycle(None)
if input_trajectories is None:
for trajectory in trajectories:
Boat.plot_trajectory(trajectory, plot=(fig, axs), color=color, linestyle=linestyle)
else:
for trajectory, input_trajectory in zip(trajectories, input_trajectories):
Boat.plot_trajectory_with_inputs(trajectory, input_trajectory, plot=(fig, axs), color=color, linestyle=linestyle)
if plot is None:
plt.plot()
return fig, axs
def plot_animation(self, boats_S, input_trajectories=None, show_regions=True):
split = self.split
def patch_pose(pose):
x,y,theta = pose
return (
x - self.width/2*np.cos(theta) + self.height/2*np.sin(theta),
y - self.width/2*np.sin(theta) - self.height/2*np.cos(theta),
theta*180/np.pi
)
def patches_interboat_split(pose):
x,y,theta = pose
return [[x - self.height/2*np.cos(theta), y - self.height/2*np.sin(theta)],
[x + self.height/2*np.cos(theta), y + self.height/2*np.sin(theta)]
]
def animate(frame):
for p in range(len(patches)):
patch = patches[p]
pose = boats_S[p][frame][:3]
px,py,ptheta = patch_pose(pose)
patch.set_x(px)
patch.set_y(py)
patch._angle = ptheta
if show_regions:
region = regions[p]
if split:
region[0].center, region[1].center = patches_interboat_split(pose)
else:
region.center = boats_S[p][frame][:3]
if show_regions:
if split:
return patches+[r for r in region for region in regions]
return patches+regions
return patches
fig, axs = plt.subplots(nrows=1,ncols=1, figsize=(12,8))
axs.axis('off')
self.plot_x0xN(boats_S, [0.2], [0.2], plot=(fig, axs), boat_colorN='w', region_colorN='darkorange')
axs.set_aspect('equal')
patches, regions = self.plot_configuration(boats_S[:,0], plot=(fig,axs), boat_color='darkorange', border=1, region_color='0.2')
plt.xlim(np.min(boats_S[:,:,0])-self.width, np.max(boats_S[:,:,0])+self.width)
plt.ylim(np.min(boats_S[:,:,1])-self.width, np.max(boats_S[:,:,1])+self.width)
ani = animation.FuncAnimation(fig, animate, frames=range(boats_S.shape[1]), blit=True, interval=20)
return ani
def add_collision_constraints(self, mp, boats_S):
def add_collision_constraint(b1, b2):
mp.AddConstraint(np.sum((b1[:2]-b2[:2])**2) >= self.min_interboat_distance_squared)
def add_split_collision_constraint(b1, b2):
#pairwise collision constraint on each half of boat
for b1d in [-.25,.25]:
for b2d in [-.25,.25]:
b1x = b1[0]+self.width*b1d
b1y = b1[1]+self.width*b1d
b2x = b2[0]+self.width*b2d
b2y = b2[1]+self.width*b2d
mp.AddConstraint((b1x-b2x)**2+(b1y-b2y)**2 >= self.split_min_interboat_distance_squared)
for i in range(len(boats_S)):
for j in range(i+1, len(boats_S)):
for t in range(len(boats_S[0])):
if self.split:
add_split_collision_constraint(boats_S[i][t], boats_S[j][t])
else:
add_collision_constraint(boats_S[i][t], boats_S[j][t])
def add_dif_distance_costs(self, mp, boats_S, final_states):
for i in range(len(boats_S)):
for j in range(i+1, len(boats_S)):
final_state_dif = final_states[i]-final_states[j] #np.expand_dims(final_states[i]-final_states[j], axis=0)
for t in range(len(boats_S[0])):
mp.AddQuadraticCost(np.sum((boats_S[i,t]-boats_S[j,t]-final_state_dif)**2))
class threeInputBoat(Boat):
num_inputs = 3
max_u = 6
@classmethod
def boat_dynamics(cls, s, u):
derivs = np.zeros_like(s)
derivs[0] = s[3];
derivs[1] = s[4];
derivs[2] = s[5];
derivs[3] = -cls.d11 / cls.m11 * s[3] + u[0] / cls.m11;
derivs[4] = -cls.d22 / cls.m22 * s[4] + u[1] / cls.m22;
derivs[5] = -cls.d33 / cls.m33 * s[5] + cls.width / (2 * cls.m33) * u[2];
return derivs
class twoInputBoat(Boat):
num_inputs = 2
num_states = 4
max_u = 6
state_selector = np.array([0,1,3,4])
def toProblemState(self, boats_s):
assert boats_s.shape[1] == Boat.num_states
return boats_s[:,self.state_selector]
def toProblemStates(self, boats_S):
assert boats_S.shape[-1] == Boat.num_states
return boats_S[:,:,self.state_selector]
def toGlobalStates(self, boats_S, state_initial=None):
assert boats_S.shape[-1] == self.num_states
shape = np.array(boats_S.shape)
shape[-1] = Boat.num_states
boats_S_global = np.zeros(shape)
if state_initial is not None:
boats_S_global[:,:] = np.expand_dims(state_initial, 1)
boats_S_global[:,:,self.state_selector] = boats_S
return boats_S_global
@classmethod
def boat_dynamics(cls, s, u):
derivs = np.zeros_like(s)
derivs[0] = s[2];
derivs[1] = s[3];
derivs[2] = -cls.d11 / cls.m11 * s[2] + u[0] / cls.m11;
derivs[3] = -cls.d22 / cls.m22 * s[3] + u[1] / cls.m22;
return derivs