-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
137 lines (107 loc) · 4.73 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
import os
import subprocess
from subprocess import Popen, PIPE
from shutil import rmtree
import argparse
from glob import glob
import datetime, time
import yaml
from bids_utils import extract_bids_data
def create_dir(dir_path, sub_dir):
import os
dir_path = os.path.abspath(dir_path)
dir_path = os.path.join(dir_path, sub_dir)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
return dir_path
def run(command, env={}):
process = Popen(command, stdout=PIPE, stderr=subprocess.STDOUT,
shell=True, env=env)
while True:
line = process.stdout.readline()
line = str(line)[:-1]
print(line)
if line == '' and process.poll() != None:
break
parser = argparse.ArgumentParser(description='PCP-QAP Pipeline Runner')
parser.add_argument('bids_dir', help='The directory with the input dataset '
'formatted according to the BIDS standard.')
parser.add_argument('output_dir', help='The directory where the output CSV '
'files should be stored.')
parser.add_argument('analysis_level', help='Level of the analysis that will '
' be performed. Multiple participant level analyses can be run '
' independently (in parallel) using the same output_dir. Group level'
' analysis compiles multiple participant level quality metrics into'
'group-level csv files.',
choices=['participant', 'group'])
parser.add_argument('--participant_label', help='The label of the participant'
' that should be analyzed. The label '
'corresponds to sub-<participant_label> from the BIDS spec '
'(so it does not include "sub-"). If this parameter is not '
'provided all subjects should be analyzed. Multiple '
'participants can be specified with a space separated list.', nargs="+")
parser.add_argument('--pipeline_file', help='Name for the pipeline '
' configuration file to use, uses a default configuration if not'
' specified',
default="/qap_resources/default_pipeline.yml")
parser.add_argument('--n_cpus', help='Number of execution '
' resources available for the pipeline, default=1', default="1")
parser.add_argument('--mem', help='Amount of RAM available '
' to the pipeline in GB, default = 6', default="6")
parser.add_argument('--save_working_dir', action='store_true',
help='Save the contents of the working directory.', default=False)
parser.add_argument('--report', action='store_true', help='Generates pdf '
'for graphically assessing data quality.', default=False)
# get the command line arguments
args = parser.parse_args()
# validate input dir
run("bids-validator %s"%args.bids_dir)
print(args)
# get and set configuration
c = yaml.load(open(os.path.realpath(args.pipeline_file), 'r'))
# set the parameters using the command line arguments
c['output_directory'] = create_dir(args.output_dir, "output")
c['num_subjects_per_bundle'] = int(args.n_cpus)
if( args.save_working_dir == True ):
c['write_all_outputs'] = True
c['working_directory'] = create_dir(args.output_dir, "working")
else:
c['write_all_outputs'] = False
c['working_directory'] = create_dir('/tmp', "working")
c['write_report'] = args.report
c['num_processors'] = int(args.n_cpus)
c['memory_allocated'] = int(args.mem)
print ("#### Running QAP on %s"%(args.participant_label))
print ("Number of subjects to run in parallel: %d"%(c['num_subjects_per_bundle']))
print ("Output directory: %s"%(c['output_directory']))
print ("Working directory: %s"%(c['working_directory']))
print ("Save working directory: %s"%(c['write_all_outputs']))
if args.analysis_level.lower() == 'participant':
file_paths=[]
if args.participant_label:
for pt in args.participant_label:
file_paths+=glob(os.path.join(args.bids_dir,"sub-%s"%(pt),
"*","*.nii*"))+glob(os.path.join(args.bids_dir,"sub-%s"%(pt),
"*","*","*.nii*"))
else:
file_paths=glob(os.path.join(args.bids_dir,"*","*.nii*"))+\
glob(os.path.join(args.bids_dir,"*","*","*.nii*"))
sub_list = extract_bids_data(file_paths)
ts = time.time()
st = datetime.datetime.fromtimestamp(ts).strftime('%Y%m%d%H%M%S')
subject_list_file=os.path.join(args.output_dir,"bids_run_sublist_%s.yml"%(st))
with open(subject_list_file, 'w') as f:
yaml.dump(sub_list, f)
#update config file
config_file=os.path.join(args.output_dir,"bids_run_config_%s.yml"%(st))
with open(config_file, 'w') as f:
yaml.dump(c, f)
#build pipeline
from qap.cli import QAProtocolCLI
obj = QAProtocolCLI(parse_args=False)
obj.run(config_file, subject_list_file)
else:
print "Running group level analysis to merge participant results"
os.system('qap_merge_outputs.py %s'%c['output_directory'])
print "finished"