-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadmm.py
601 lines (508 loc) · 23.6 KB
/
admm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms
import operator
import random
from testers import *
from numpy import linalg as LA
import yaml
class ADMM:
def __init__(self, model, file_name, rho=0.001):
self.ADMM_U = {}
self.ADMM_Z = {}
self.rho = rho
self.rhos = {}
self.init(file_name, model)
def init(self, config, model):
"""
Args:
config: configuration file that has settings for prune ratios, rhos
called by ADMM constructor. config should be a .yaml file
"""
if not isinstance(config, str):
raise Exception("filename must be a str")
with open(config, "r") as stream:
try:
raw_dict = yaml.load(stream)
self.prune_ratios = raw_dict['prune_ratios']
for k, v in self.prune_ratios.items():
self.rhos[k] = self.rho
for (name, W) in model.named_parameters():
if name not in self.prune_ratios:
continue
self.ADMM_U[name] = torch.zeros(W.shape).cuda() # add U
self.ADMM_Z[name] = torch.Tensor(W.shape).cuda() # add Z
except yaml.YAMLError as exc:
print(exc)
def random_pruning(args, weight, prune_ratio):
weight = weight.cpu().detach().numpy() # convert cpu tensor to numpy
if (args.sparsity_type == "filter"):
shape = weight.shape
weight2d = weight.reshape(shape[0], -1)
shape2d = weight2d.shape
indices = np.random.choice(shape2d[0], int(shape2d[0] * prune_ratio), replace=False)
weight2d[indices, :] = 0
weight = weight2d.reshape(shape)
expand_above_threshold = np.zeros(shape2d, dtype=np.float32)
for i in range(shape2d[0]):
expand_above_threshold[i, :] = i not in indices
weight = weight2d.reshape(shape)
expand_above_threshold = expand_above_threshold.reshape(shape)
return torch.from_numpy(expand_above_threshold).cuda(), torch.from_numpy(weight).cuda()
else:
raise Exception("not implemented yet")
def L1_pruning(args, weight, prune_ratio):
"""
projected gradient descent for comparison
"""
percent = prune_ratio * 100
weight = weight.cpu().detach().numpy() # convert cpu tensor to numpy
shape = weight.shape
weight2d = weight.reshape(shape[0], -1)
shape2d = weight2d.shape
row_l1_norm = LA.norm(weight2d, 1, axis=1)
percentile = np.percentile(row_l1_norm, percent)
under_threshold = row_l1_norm < percentile
above_threshold = row_l1_norm > percentile
weight2d[under_threshold, :] = 0
above_threshold = above_threshold.astype(np.float32)
expand_above_threshold = np.zeros(shape2d, dtype=np.float32)
for i in range(shape2d[0]):
expand_above_threshold[i, :] = above_threshold[i]
weight = weight.reshape(shape)
expand_above_threshold = expand_above_threshold.reshape(shape)
return torch.from_numpy(expand_above_threshold).cuda(), torch.from_numpy(weight).cuda()
def weight_pruning(args, weight, prune_ratio):
"""
weight pruning [irregular,column,filter]
Args:
weight (pytorch tensor): weight tensor, ordered by output_channel, intput_channel, kernel width and kernel height
prune_ratio (float between 0-1): target sparsity of weights
Returns:
mask for nonzero weights used for retraining
a pytorch tensor whose elements/column/row that have lowest l2 norms(equivalent to absolute weight here) are set to zero
"""
weight = weight.cpu().detach().numpy() # convert cpu tensor to numpy
percent = prune_ratio * 100
if (args.sparsity_type == "irregular"):
weight_temp = np.abs(weight) # a buffer that holds weights with absolute values
percentile = np.percentile(weight_temp, percent) # get a value for this percentitle
under_threshold = weight_temp < percentile
above_threshold = weight_temp > percentile
above_threshold = above_threshold.astype(
np.float32) # has to convert bool to float32 for numpy-tensor conversion
weight[under_threshold] = 0
return torch.from_numpy(above_threshold).cuda(), torch.from_numpy(weight).cuda()
elif (args.sparsity_type == "column"):
shape = weight.shape
weight2d = weight.reshape(shape[0], -1)
shape2d = weight2d.shape
column_l2_norm = LA.norm(weight2d, 2, axis=0)
percentile = np.percentile(column_l2_norm, percent)
under_threshold = column_l2_norm < percentile
above_threshold = column_l2_norm > percentile
weight2d[:, under_threshold] = 0
above_threshold = above_threshold.astype(np.float32)
expand_above_threshold = np.zeros(shape2d, dtype=np.float32)
for i in range(shape2d[1]):
expand_above_threshold[:, i] = above_threshold[i]
expand_above_threshold = expand_above_threshold.reshape(shape)
weight = weight.reshape(shape)
return torch.from_numpy(expand_above_threshold).cuda(), torch.from_numpy(weight).cuda()
elif (args.sparsity_type == "filter"):
shape = weight.shape
weight2d = weight.reshape(shape[0], -1)
shape2d = weight2d.shape
row_l2_norm = LA.norm(weight2d, 2, axis=1)
percentile = np.percentile(row_l2_norm, percent)
under_threshold = row_l2_norm < percentile
above_threshold = row_l2_norm > percentile
weight2d[under_threshold, :] = 0
above_threshold = above_threshold.astype(np.float32)
expand_above_threshold = np.zeros(shape2d, dtype=np.float32)
for i in range(shape2d[0]):
expand_above_threshold[i, :] = above_threshold[i]
weight = weight.reshape(shape)
expand_above_threshold = expand_above_threshold.reshape(shape)
return torch.from_numpy(expand_above_threshold).cuda(), torch.from_numpy(weight).cuda()
elif (args.sparsity_type == "bn_filter"):
## bn pruning is very similar to bias pruning
weight_temp = np.abs(weight)
percentile = np.percentile(weight_temp, percent)
under_threshold = weight_temp < percentile
above_threshold = weight_temp > percentile
above_threshold = above_threshold.astype(
np.float32) # has to convert bool to float32 for numpy-tensor conversion
weight[under_threshold] = 0
return torch.from_numpy(above_threshold).cuda(), torch.from_numpy(weight).cuda()
elif (args.sparsity_type == "pattern"):
print("pattern pruning...")
shape = weight.shape
pattern1 = [[0, 0], [0, 2], [2, 0], [2, 2]]
pattern2 = [[0, 0], [0, 1], [2, 1], [2, 2]]
pattern3 = [[0, 0], [0, 1], [2, 0], [2, 1]]
pattern4 = [[0, 0], [0, 1], [1, 0], [1, 1]]
pattern5 = [[0, 2], [1, 0], [1, 2], [2, 0]]
pattern6 = [[0, 0], [1, 0], [1, 2], [2, 2]]
pattern7 = [[0, 1], [0, 2], [2, 0], [2, 1]]
pattern8 = [[0, 1], [0, 2], [2, 1], [2, 2]]
pattern9 = [[1, 0], [1, 2], [2, 0], [2, 2]]
pattern10 = [[0, 0], [0, 2], [1, 0], [1, 2]]
pattern11 = [[1, 1], [1, 2], [2, 1], [2, 2]]
pattern12 = [[1, 0], [1, 1], [2, 0], [2, 1]]
pattern13 = [[0, 1], [0, 2], [1, 1], [1, 2]]
patterns_dict = {1 : pattern1,
2 : pattern2,
3 : pattern3,
4 : pattern4,
5 : pattern5,
6 : pattern6,
7 : pattern7,
8 : pattern8,
9 : pattern9,
10 : pattern10,
11 : pattern11,
12 : pattern12,
13 : pattern13
}
for i in range(shape[0]):
for j in range(shape[1]):
current_kernel = weight[i, j, :, :].copy()
temp_dict = {} # store each pattern's norm value on the same weight kernel
for key, pattern in patterns_dict.items():
temp_kernel = current_kernel.copy()
for index in pattern:
temp_kernel[index[0], index[1]] = 0
current_norm = LA.norm(temp_kernel)
temp_dict[key] = current_norm
best_pattern = max(temp_dict.items(), key=operator.itemgetter(1))[0]
# print(best_pattern)
for index in patterns_dict[best_pattern]:
weight[i, j, index[0], index[1]] = 0
non_zeros = weight != 0
non_zeros = non_zeros.astype(np.float32)
# zeros = weight == 0
# zeros = zeros.astype(np.float32)
return torch.from_numpy(non_zeros).cuda(), torch.from_numpy(weight).cuda()
elif (args.sparsity_type == "random-pattern"):
print("random_pattern pruning...", weight.shape)
shape = weight.shape
weight2d = weight.reshape(shape[0], -1)
pattern1 = [0, 2, 6, 8]
pattern2 = [0, 1, 7, 8]
pattern3 = [0, 1, 6, 7]
pattern4 = [0, 1, 3, 4]
pattern5 = [2, 3, 5, 6]
pattern6 = [0, 3, 5, 8]
pattern7 = [1, 2, 6, 7]
pattern8 = [1, 2, 7, 8]
pattern9 = [3, 5, 6, 8]
pattern10 = [0, 2, 3, 5]
pattern11 = [4, 5, 7, 8]
pattern12 = [3, 4, 6, 7]
pattern13 = [1 ,2 ,4, 5]
patterns_dict = {1: pattern1,
2: pattern2,
3: pattern3,
4: pattern4,
5: pattern5,
6: pattern6,
7: pattern7,
8: pattern8,
9: pattern9,
10: pattern10,
11: pattern11,
12: pattern12,
13: pattern13
}
for i in range(shape[0]):
zero_idx = []
for j in range(shape[1]):
pattern_j = np.array(patterns_dict[random.choice([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])])
zero_idx.append(pattern_j + 9 * j)
zero_idx = np.array(zero_idx)
zero_idx = zero_idx.reshape(1, -1)
# print(zero_idx)
weight2d[i][zero_idx] = 0
non_zeros = weight != 0
non_zeros = non_zeros.astype(np.float32)
# zeros = weight == 0
# zeros = zeros.astype(np.float32)
return torch.from_numpy(non_zeros).cuda(), torch.from_numpy(weight).cuda()
else:
raise SyntaxError("Unknown sparsity type")
def hard_prune(args, ADMM, model, option=None):
"""
hard_pruning, or direct masking
Args:
model: contains weight tensors in cuda
"""
print("hard pruning")
for (name, W) in model.named_parameters():
if name not in ADMM.prune_ratios: # ignore layers that do not have rho
continue
cuda_pruned_weights = None
if option == None:
_, cuda_pruned_weights = weight_pruning(args, W, ADMM.prune_ratios[name]) # get sparse model in cuda
elif option == "random":
_, cuda_pruned_weights = random_pruning(args, W, ADMM.prune_ratios[name])
elif option == "l1":
_, cuda_pruned_weights = L1_pruning(args, W, ADMM.prune_ratios[name])
else:
raise Exception("not implmented yet")
W.data = cuda_pruned_weights # replace the data field in variable
def test_sparsity(args, ADMM, model):
"""
test sparsity for every involved layer and the overall compression rate
"""
total_zeros = 0
total_nonzeros = 0
if args.sparsity_type == "irregular":
for i, (name, W) in enumerate(model.named_parameters()):
if 'bias' in name:
continue
W = W.cpu().detach().numpy()
zeros = np.sum(W == 0)
total_zeros += zeros
nonzeros = np.sum(W != 0)
total_nonzeros += nonzeros
print("sparsity at layer {} is {}".format(name, zeros / (zeros + nonzeros)))
total_weight_number = total_zeros + total_nonzeros
print('overal compression rate is {}'.format(total_weight_number / total_nonzeros))
elif args.sparsity_type == "column":
for i, (name, W) in enumerate(model.named_parameters()):
if 'bias' in name or name not in ADMM.prune_ratios:
continue
W = W.cpu().detach().numpy()
shape = W.shape
W2d = W.reshape(shape[0], -1)
column_l2_norm = LA.norm(W2d, 2, axis=0)
zero_column = np.sum(column_l2_norm == 0)
nonzero_column = np.sum(column_l2_norm != 0)
total_zeros += np.sum(W == 0)
total_nonzeros += np.sum(W != 0)
print("column sparsity of layer {} is {}".format(name, zero_column / (zero_column + nonzero_column)))
print(
'only consider conv layers, compression rate is {}'.format((total_zeros + total_nonzeros) / total_nonzeros))
elif args.sparsity_type == "filter":
for i, (name, W) in enumerate(model.named_parameters()):
if 'bias' in name or name not in ADMM.prune_ratios:
continue
W = W.cpu().detach().numpy()
shape = W.shape
W2d = W.reshape(shape[0], -1)
row_l2_norm = LA.norm(W2d, 2, axis=1)
zero_row = np.sum(row_l2_norm == 0)
nonzero_row = np.sum(row_l2_norm != 0)
total_zeros += np.sum(W == 0)
total_nonzeros += np.sum(W != 0)
print("filter sparsity of layer {} is {}".format(name, zero_row / (zero_row + nonzero_row)))
print(
'only consider conv layers, compression rate is {}'.format((total_zeros + total_nonzeros) / total_nonzeros))
elif args.sparsity_type == "bn_filter":
for i, (name, W) in enumerate(model.named_parameters()):
if name not in ADMM.prune_ratios:
continue
W = W.cpu().detach().numpy()
zeros = np.sum(W == 0)
nonzeros = np.sum(W != 0)
print("sparsity at layer {} is {}".format(name, zeros / (zeros + nonzeros)))
def admm_initialization(args, ADMM, model):
if not args.admm:
return
for i, (name, W) in enumerate(model.named_parameters()):
if name in ADMM.prune_ratios:
_, updated_Z = weight_pruning(args, W, ADMM.prune_ratios[name]) # Z(k+1) = W(k+1)+U(k) U(k) is zeros her
ADMM.ADMM_Z[name] = updated_Z
def z_u_update(args, ADMM, model, device, train_loader, optimizer, epoch, data, batch_idx, writer):
if not args.admm:
return
if epoch != 1 and (epoch - 1) % args.admm_epoch == 0 and batch_idx == 0:
for i, (name, W) in enumerate(model.named_parameters()):
if name not in ADMM.prune_ratios:
continue
Z_prev = None
if (args.verbose):
Z_prev = torch.Tensor(ADMM.ADMM_Z[name].cpu()).cuda()
ADMM.ADMM_Z[name] = W + ADMM.ADMM_U[name] # Z(k+1) = W(k+1)+U[k]
_, updated_Z = weight_pruning(args, ADMM.ADMM_Z[name],
ADMM.prune_ratios[name]) # equivalent to Euclidean Projection
ADMM.ADMM_Z[name] = updated_Z
if (args.verbose):
if writer:
writer.add_scalar('layer:{} W(k+1)-Z(k+1)'.format(name),
torch.sqrt(torch.sum((W - ADMM.ADMM_Z[name]) ** 2)).item(), epoch)
writer.add_scalar('layer:{} Z(k+1)-Z(k)'.format(name),
torch.sqrt(torch.sum((ADMM.ADMM_Z[name] - Z_prev) ** 2)).item(), epoch)
# print ("at layer {}. W(k+1)-Z(k+1): {}".format(name,torch.sqrt(torch.sum((W-ADMM.ADMM_Z[name])**2)).item()))
# print ("at layer {}, Z(k+1)-Z(k): {}".format(name,torch.sqrt(torch.sum((ADMM.ADMM_Z[name]-Z_prev)**2)).item()))
ADMM.ADMM_U[name] = W - ADMM.ADMM_Z[name] + ADMM.ADMM_U[name] # U(k+1) = W(k+1) - Z(k+1) +U(k)
def append_admm_loss(args, ADMM, model, ce_loss):
'''
append admm loss to cross_entropy loss
Args:
args: configuration parameters
model: instance to the model class
ce_loss: the cross entropy loss
Returns:
ce_loss(tensor scalar): original cross enropy loss
admm_loss(dict, name->tensor scalar): a dictionary to show loss for each layer
ret_loss(scalar): the mixed overall loss
'''
admm_loss = {}
if args.admm:
for i, (name, W) in enumerate(model.named_parameters()): ## initialize Z (for both weights and bias)
if name not in ADMM.prune_ratios:
continue
admm_loss[name] = 0.5 * ADMM.rhos[name] * (torch.norm(W - ADMM.ADMM_Z[name] + ADMM.ADMM_U[name], p=2) ** 2)
mixed_loss = 0
mixed_loss += ce_loss
for k, v in admm_loss.items():
mixed_loss += v
return ce_loss, admm_loss, mixed_loss
def admm_adjust_learning_rate(optimizer, epoch, args):
""" (The pytorch learning rate scheduler)
Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
"""
For admm, the learning rate change is periodic.
When epoch is dividable by admm_epoch, the learning rate is reset
to the original one, and decay every 3 epoch (as the default
admm epoch is 9)
"""
admm_epoch = args.admm_epoch
lr = None
if epoch % admm_epoch == 0:
lr = args.lr
else:
admm_epoch_offset = epoch % admm_epoch
admm_step = admm_epoch / 3 # roughly every 1/3 admm_epoch.
lr = args.lr * (0.1 ** (admm_epoch_offset // admm_step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Training using ADMM with masks (loss_sum = loss(output,target)+loss(U,Z)). -libn
# Used for training: to update: Weight, U, Z according to loss(output, target)+loss(U,Z). -libn
def admm_masked_train(args, ADMM, model, device, train_loader, optimizer, epoch):
model.train()
masks = {}
writer = None
# get masks from parameters! -libn
for i, (name, W) in enumerate(model.named_parameters()):
weight = W.cpu().detach().numpy()
non_zeros = weight != 0
non_zeros = non_zeros.astype(np.float32)
zero_mask = torch.from_numpy(non_zeros).cuda()
W = torch.from_numpy(weight).cuda()
W.data = W
masks[name] = zero_mask
if epoch == 1:
# inialize Z variable
# print("Start admm training quantized network, quantization type: {}".format(args.quant_type))
admm_initialization(args, ADMM, model)
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
ce_loss = F.cross_entropy(output, target)
z_u_update(args, ADMM, model, device, train_loader, optimizer, epoch, data, batch_idx, writer) # update Z and U variables
ce_loss, admm_loss, mixed_loss = append_admm_loss(args, ADMM, model, ce_loss) # append admm losss
mixed_loss.backward()
for i, (name, W) in enumerate(model.named_parameters()):
if name in masks:
W.grad *= masks[name]
optimizer.step()
if batch_idx % args.log_interval == 0:
print("cross_entropy loss: {}, mixed_loss : {}".format(ce_loss, mixed_loss))
print('Train Epoch: {} [{}/{} ({:.0f}%)] [lr: {}]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), args.lr, ce_loss.item()))
# test_column_sparsity(model)
# ?1:
# Seemingly, there is no difference between: masked_retrain() and combined_masked_retrain(). -libn
# Used for retraining: to update: Weight according to loss(output, target). -libn
def combined_masked_retrain(args, ADMM, model, device, train_loader, optimizer, epoch):
if not args.masked_retrain:
return
idx_loss_dict = {}
model.train()
masks = {}
# The only difference between masked_retrain() and combined_masked_retrain() ??? -libn
# get masks from parameters! -libn
with open("./profile/" + args.config_file + ".yaml", "r") as stream:
raw_dict = yaml.load(stream)
prune_ratios = raw_dict['prune_ratios']
# The only difference between masked_retrain() and combined_masked_retrain() ??? -libn
for i, (name, W) in enumerate(model.named_parameters()):
if name not in ADMM.prune_ratios:
continue
_, weight = weight_pruning(args, W, prune_ratios[name])
W.data = W
weight = W.cpu().detach().numpy()
non_zeros = weight != 0
non_zeros = non_zeros.astype(np.float32)
zero_mask = torch.from_numpy(non_zeros).cuda()
W = torch.from_numpy(weight).cuda()
W.data = W
masks[name] = zero_mask
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
for i, (name, W) in enumerate(model.named_parameters()):
if name in masks:
W.grad *= masks[name]
optimizer.step()
if batch_idx % args.log_interval == 0:
for param_group in optimizer.param_groups:
current_lr = param_group['lr']
print("({}) ({}) cross_entropy loss: {}".format(args.sparsity_type, args.optmzr, loss))
print('re-Train Epoch: {} [{}/{} ({:.0f}%)] [lr: {}]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), current_lr, loss.item()))
if batch_idx % 10 == 0:
idx_loss_dict[batch_idx] = loss.item()
# test_filter_sparsity(model)
# test_sparsity(args, ADMM, model)
return idx_loss_dict
# ?1:
# Seemingly, there is no difference between: masked_retrain() and combined_masked_retrain(). -libn
def masked_retrain(args, ADMM, model, device, train_loader, optimizer, epoch):
if not args.masked_retrain:
return
idx_loss_dict = {}
model.train()
masks = {}
for i, (name, W) in enumerate(model.named_parameters()):
if name not in ADMM.prune_ratios:
continue
above_threshold, W = weight_pruning(args, W, ADMM.prune_ratios[name])
W.data = W
masks[name] = above_threshold
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
for i, (name, W) in enumerate(model.named_parameters()):
if name in masks:
W.grad *= masks[name]
optimizer.step()
if batch_idx % args.log_interval == 0:
for param_group in optimizer.param_groups:
current_lr = param_group['lr']
print("({}) cross_entropy loss: {}".format(args.sparsity_type, loss))
print('re-Train Epoch: {} [{}/{} ({:.0f}%)] [{}]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), current_lr, loss.item()))
if batch_idx % 1 == 0:
idx_loss_dict[batch_idx] = loss.item()
# test_sparsity(args, ADMM, model)
# admm.test_sparsity(args, ADMM, model)
return idx_loss_dict