-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesters.py
229 lines (183 loc) · 9.29 KB
/
testers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
def test_irregular_sparsity(model):
"""
:param model: saved re-trained model
:return:
"""
total_zeros = 0
total_nonzeros = 0
for name, weight in model.named_parameters():
if "bias" in name:
continue
zeros = np.sum(weight.cpu().detach().numpy() == 0)
total_zeros += zeros
non_zeros = np.sum(weight.cpu().detach().numpy() != 0)
total_nonzeros += non_zeros
zeros = np.sum(weight.cpu().detach().numpy() == 0)
non_zero = np.sum(weight.cpu().detach().numpy() != 0)
print("irregular zeros: {}, irregular sparsity is: {:.4f}".format(zeros, zeros / (zeros + non_zero)))
print("---------------------------------------------------------------------------")
print("total number of zeros: {}, non-zeros: {}, zero sparsity is: {:.4f}".format(
total_zeros, total_nonzeros, total_zeros / (total_zeros + total_nonzeros)))
print("only consider conv layers, compression rate is: {:.4f}".format(
(total_zeros+total_nonzeros) / total_nonzeros))
print("===========================================================================\n\n")
compression_rate = float((total_zeros+total_nonzeros) / total_nonzeros)
return compression_rate
def test_column_sparsity(model):
"""
:param model: saved re-trained model
:return:
"""
total_zeros = 0
total_nonzeros = 0
total_column = 0
total_empty_column = 0
for name, weight in model.named_parameters():
if(len(weight.size()) == 4): # only consider conv layers
zeros = np.sum(weight.cpu().detach().numpy() == 0)
total_zeros += zeros
non_zeros = np.sum(weight.cpu().detach().numpy() != 0)
total_nonzeros += non_zeros
weight2d = weight.reshape(weight.shape[0], -1)
column_num = weight2d.shape[1]
empty_column = np.sum(np.sum(weight2d.cpu().detach().numpy(), axis=0) == 0)
print("empty column of {} is: {}. column sparsity is: {:.4f}".format(
name, empty_column, empty_column / column_num))
total_column += column_num
total_empty_column += empty_column
print("---------------------------------------------------------------------------")
print("total number of zeros: {}, non-zeros: {}, zero sparsity is: {:.4f}".format(
total_zeros, total_nonzeros, total_zeros / (total_zeros + total_nonzeros)))
print("total number of column: {}, empty-column: {}, column sparsity is: {:.4f}".format(
total_column, total_empty_column, total_empty_column / total_column))
print("only consider conv layers, compression rate is: {:.4f}".format(
(total_zeros + total_nonzeros)/total_nonzeros))
unused = calculate_unused_weight(model)
print("only consider conv layers, including unused weight, compression rate is: {:.4f}".format(
(total_zeros + total_nonzeros) / (total_nonzeros - unused)))
print("===========================================================================\n\n")
def calculate_unused_weight(model):
"""
helper funtion to calculate the corresponding filter add-on sparsity to next layer empty channel
:param model: saved re-trained model
:return:
"""
weight_dict = {} # indexed weight copy
m = 1 # which layer
n = 1 # which layer
counter = 1 # layer counter
total_unused_number = 0 # result
flag1 = False # detect sparsity type
flag2 = False # detect sparsity type
for name, weight in model.named_parameters(): # calculate total layer
if (len(weight.size()) == 4):
weight_dict[counter] = weight
counter += 1
counter = counter - 1
for name, weight in model.named_parameters():
if (len(weight.size()) == 4):
weight3d = weight.reshape(weight.shape[0], weight.shape[1], -1)
""" calculate unused filter, previous layer filter <= empty channel by column pruning """
if m != 1:
empty_channel_index = []
for i in range(weight3d.size()[1]):
non_zero_filter = np.where(weight3d[:, i, :].cpu().detach().numpy().any(axis=1))[0]
if non_zero_filter.size == 0:
channel_i = weight3d[0, i, :]
else:
channel_i = weight3d[non_zero_filter[0], i, :]
zeros = np.sum(channel_i.cpu().detach().numpy() == 0)
channel_empty_ratio = zeros / weight3d.size()[2]
if channel_empty_ratio == 1:
empty_channel_index.append(i)
flag1 = True
# print(name, empty_channel_index)
previous_layer = weight_dict[m - 1]
filter_unused_num = 0
for filter_index in empty_channel_index:
target_filter = previous_layer[filter_index, :, :, :]
filter_unused_num += np.sum(target_filter.cpu().detach().numpy() != 0) # != 0 to calculate sparsity
total_unused_number += filter_unused_num
m += 1
#=====================================================================================#
""" calculate unused channel, empty filter by filter pruning => next layer channel """
if n != counter:
empty_filter_index = []
for j in range (weight.size()[0]):
if np.sum(weight[j, :, :, :].cpu().detach().numpy()) == 0:
empty_filter_index.append(j)
flag2 = True
# print(empty_filter_index)
next_layer = weight_dict[n + 1]
channel_unused_num = 0
for channel_index in empty_filter_index:
target_channel = next_layer[:, channel_index, :, :]
channel_unused_num += np.sum(target_channel.cpu().detach().numpy() != 0) # != 0 to calculate sparsity
total_unused_number += channel_unused_num
n += 1
if flag1 and not flag2:
print("your model has column sparsity")
elif flag2 and not flag1:
print("your model has filter sparsity")
elif flag1 and flag2:
print("your model has column AND filter sparsity")
print("total unused weight number (column => prev filter / filter => next column): ", total_unused_number)
return total_unused_number
def test_chanel_sparsity(model):
"""
:param model: saved re-trained model
:return:
"""
for name, weight in model.named_parameters():
if(len(weight.size()) == 4):
weight2d = weight.reshape(weight.shape[0], weight.shape[1] , -1)
""" check channel sparsity based on column sparsity"""
# print(weight.size(), weight2d.size())
almost_empty_channel = 0
for i in range(weight2d.size()[1]):
channel_i = weight2d[0, i, :]
print(channel_i)
zeros = np.sum(channel_i.cpu().detach().numpy() == 0)
channel_empty_ratio = zeros / weight2d.size()[2]
if channel_empty_ratio == 1:
almost_empty_channel += 1
# print(zeros, weight2d.size()[2])
# print(channel_empty_ratio)
print("({} {}) almost empty channel: {}, total channel: {}. ratio: {}%".format(name, weight.size(),
almost_empty_channel, weight2d.size()[1], 100.0 * almost_empty_channel / weight2d.size()[1]))
def test_filter_sparsity(model):
"""
:param model: saved re-trained model
:return:
"""
total_zeros = 0
total_nonzeros = 0
total_filters = 0
total_empty_filters = 0
for name, weight in model.named_parameters():
if(len(weight.size()) == 4): # only consider conv layers
zeros = np.sum(weight.cpu().detach().numpy() == 0)
total_zeros += zeros
non_zeros = np.sum(weight.cpu().detach().numpy() != 0)
total_nonzeros += non_zeros
empty_filters = 0
filter_num = weight.size()[0]
for i in range(filter_num):
if np.sum(weight[i,:,:,:].cpu().detach().numpy()) == 0:
empty_filters += 1
print("empty filter of {} is: {}. filter sparsity is: {:.4f}".format(
name, empty_filters, empty_filters / filter_num))
total_filters += filter_num
total_empty_filters += empty_filters
print("---------------------------------------------------------------------------")
print("total number of zeros: {}, non-zeros: {}, zero sparsity is: {:.4f}".format(
total_zeros, total_nonzeros, total_zeros / (total_zeros + total_nonzeros)))
print("total number of filters: {}, empty-filters: {}, filter sparsity is: {:.4f}".format(
total_filters, total_empty_filters, total_empty_filters / total_filters))
print("only consider conv layers, compression rate is: {:.4f}".format(
(total_zeros + total_nonzeros) / total_nonzeros))
unused = calculate_unused_weight(model)
print("only consider conv layers, including unused weight, compression rate is: {:.4f}".format(
(total_zeros + total_nonzeros) / (total_nonzeros - unused)))
print("===========================================================================\n\n")