forked from mskcc/vcf2maf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vcf2maf.pl
882 lines (782 loc) · 55.8 KB
/
vcf2maf.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
#!/usr/bin/env perl
# vcf2maf - Convert a VCF into a MAF by mapping each variant to only one of all possible gene isoforms
use strict;
use warnings;
use IO::File;
use Getopt::Long qw( GetOptions );
use Pod::Usage qw( pod2usage );
# Set any default paths and constants
my ( $tumor_id, $normal_id ) = ( "TUMOR", "NORMAL" );
my ( $vep_path, $vep_data, $vep_forks, $ref_fasta ) = ( "~/vep", "~/.vep", 4, "~/.vep/homo_sapiens/76_GRCh37/Homo_sapiens.GRCh37.75.dna.primary_assembly.fa" );
my ( $snpeff_path, $snpeff_data, $snpeff_db ) = ( "~/snpEff", "~/snpEff/data", "GRCh37.75" );
my ( $ncbi_build, $maf_center, $min_hom_vaf ) = ( "GRCh37", ".", 0.7 );
# Hash to convert 3-letter amino-acid codes to their 1-letter codes
my %aa3to1 = qw( Ala A Arg R Asn N Asp D Asx B Cys C Glu E Gln Q Glx Z Gly G His H Ile I Leu L
Lys K Met M Phe F Pro P Ser S Thr T Trp W Tyr Y Val V Xxx X Ter * );
# Prioritize Sequence Ontology terms from VEP/snpEff in order of severity, as estimated by Ensembl:
# http://useast.ensembl.org/info/genome/variation/predicted_data.html#consequences
# ::NOTE:: snpEff conversion to SO terms has caveats, so handle exceptions as necessary
sub GetEffectPriority {
my ( $effect ) = @_;
$effect = '' unless( defined $effect );
my %effectPriority = (
'transcript_ablation' => 1, # A feature ablation whereby the deleted region includes a transcript feature
'exon_loss_variant' => 1, # A sequence variant whereby an exon is lost from the transcript
'splice_donor_variant' => 2, # A splice variant that changes the 2 base region at the 5' end of an intron
'splice_acceptor_variant' => 2, # A splice variant that changes the 2 base region at the 3' end of an intron
'stop_gained' => 3, # A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript
'frameshift_variant' => 3, # A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three
'stop_lost' => 3, # A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript
'start_lost' => 4, # A codon variant that changes at least one base of the canonical start codon
'initiator_codon_variant' => 4, # A codon variant that changes at least one base of the first codon of a transcript
'disruptive_inframe_insertion' => 5, # An inframe increase in cds length that inserts one or more codons into the coding sequence within an existing codon
'disruptive_inframe_deletion' => 5, # An inframe decrease in cds length that deletes bases from the coding sequence starting within an existing codon
'inframe_insertion' => 5, # An inframe non synonymous variant that inserts bases into the coding sequence
'inframe_deletion' => 5, # An inframe non synonymous variant that deletes bases from the coding sequence
'missense_variant' => 6, # A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved
'conservative_missense_variant' => 6, # A sequence variant whereby at least one base of a codon is changed resulting in a codon that encodes for a different but similar amino acid. These variants may or may not be deleterious
'rare_amino_acid_variant' => 6, # A sequence variant whereby at least one base of a codon encoding a rare amino acid is changed, resulting in a different encoded amino acid
'transcript_amplification' => 7, # A feature amplification of a region containing a transcript
'stop_retained_variant' => 8, # A sequence variant where at least one base in the terminator codon is changed, but the terminator remains
'synonymous_variant' => 8, # A sequence variant where there is no resulting change to the encoded amino acid
'splice_region_variant' => 9, # A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron
'incomplete_terminal_codon_variant' => 10, # A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed
'coding_sequence_variant' => 11, # A sequence variant that changes the coding sequence
'mature_miRNA_variant' => 11, # A transcript variant located with the sequence of the mature miRNA
'exon_variant' => 11, # A sequence variant that changes exon sequence
'5_prime_UTR_variant' => 12, # A UTR variant of the 5' UTR
'5_prime_UTR_premature_start_codon_gain_variant' => 12, # snpEff-specific effect, creating a start codon in 5' UTR
'3_prime_UTR_variant' => 12, # A UTR variant of the 3' UTR
'non_coding_exon_variant' => 13, # A sequence variant that changes non-coding exon sequence
'non_coding_transcript_exon_variant' => 13, # snpEff-specific synonym for non_coding_exon_variant
'non_coding_transcript_variant' => 14, # A transcript variant of a non coding RNA gene
'nc_transcript_variant' => 14, # A transcript variant of a non coding RNA gene (older alias for non_coding_transcript_variant)
'intron_variant' => 14, # A transcript variant occurring within an intron
'intragenic_variant' => 14, # A variant that occurs within a gene but falls outside of all transcript features. This occurs when alternate transcripts of a gene do not share overlapping sequence
'INTRAGENIC' => 14, # snpEff-specific synonym of intragenic_variant
'NMD_transcript_variant' => 15, # A variant in a transcript that is the target of NMD
'upstream_gene_variant' => 16, # A sequence variant located 5' of a gene
'downstream_gene_variant' => 16, # A sequence variant located 3' of a gene
'TFBS_ablation' => 17, # A feature ablation whereby the deleted region includes a transcription factor binding site
'TFBS_amplification' => 17, # A feature amplification of a region containing a transcription factor binding site
'TF_binding_site_variant' => 17, # A sequence variant located within a transcription factor binding site
'regulatory_region_ablation' => 17, # A feature ablation whereby the deleted region includes a regulatory region
'regulatory_region_amplification' => 17, # A feature amplification of a region containing a regulatory region
'regulatory_region_variant' => 17, # A sequence variant located within a regulatory region
'regulatory_region' =>17, # snpEff-specific effect that should really be regulatory_region_variant
'feature_elongation' => 18, # A sequence variant that causes the extension of a genomic feature, with regard to the reference sequence
'feature_truncation' => 18, # A sequence variant that causes the reduction of a genomic feature, with regard to the reference sequence
'intergenic_variant' => 19, # A sequence variant located in the intergenic region, between genes
'intergenic_region' => 19, # snpEff-specific effect that should really be intergenic_variant
'' => 20
);
$effectPriority{$effect} or die "ERROR: Unrecognized effect \"$effect\". Please update your hashes!\n";
return $effectPriority{$effect};
}
# Prioritize the transcript biotypes that variants are annotated to, based on disease significance:
# All possible biotypes are defined here: http://www.gencodegenes.org/gencode_biotypes.html
sub GetBiotypePriority {
my ( $biotype ) = @_;
$biotype = '' unless( defined $biotype );
my %biotype_priority = (
'protein_coding' => 1, # Contains an open reading frame (ORF)
'LRG_gene' => 2, # Gene in a "Locus Reference Genomic" region known to have disease-related sequence variations
'IG_C_gene' => 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT
'IG_D_gene' => 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT
'IG_J_gene' => 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT
'IG_V_gene' => 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT
'TR_C_gene' => 2, # T-cell receptor (TcR) genes imported or annotated according to the IMGT
'TR_D_gene' => 2, # T-cell receptor (TcR) genes imported or annotated according to the IMGT
'TR_J_gene' => 2, # T-cell receptor (TcR) genes imported or annotated according to the IMGT
'TR_V_gene' => 2, # T-cell receptor (TcR) genes imported or annotated according to the IMGT
'miRNA' => 3, # Non-coding RNA predicted using sequences from RFAM and miRBase
'snRNA' => 3, # Non-coding RNA predicted using sequences from RFAM and miRBase
'snoRNA' => 3, # Non-coding RNA predicted using sequences from RFAM and miRBase
'rRNA' => 3, # Non-coding RNA predicted using sequences from RFAM and miRBase
'lincRNA' => 3, # Long, intervening noncoding (linc) RNAs, that can be found in evolutionarily conserved, intergenic regions
'Mt_tRNA' => 4, # Non-coding RNA predicted using sequences from RFAM and miRBase
'Mt_rRNA' => 4, # Non-coding RNA predicted using sequences from RFAM and miRBase
'antisense' => 5, # Has transcripts that overlap the genomic span (i.e. exon or introns) of a protein-coding locus on the opposite strand
'sense_intronic' => 5, # Long non-coding transcript in introns of a coding gene that does not overlap any exons
'sense_overlapping' => 5, # Long non-coding transcript that contains a coding gene in its intron on the same strand
'3prime_overlapping_ncrna' => 5, # Transcripts where ditag and/or published experimental data strongly supports the existence of short non-coding transcripts transcribed from the 3'UTR
'misc_RNA' => 5, # Non-coding RNA predicted using sequences from RFAM and miRBase
'non_coding' => 5, # Transcript which is known from the literature to not be protein coding
'regulatory_region' => 6, # A region of sequence that is involved in the control of a biological process
'disrupted_domain' => 6, # Otherwise viable coding region omitted from this alternatively spliced transcript because the splice variation affects a region coding for a protein domain
'processed_transcript' => 6, # Doesn't contain an ORF
'TEC' => 6, # To be Experimentally Confirmed. This is used for non-spliced EST clusters that have polyA features. This category has been specifically created for the ENCODE project to highlight regions that could indicate the presence of protein coding genes that require experimental validation, either by 5' RACE or RT-PCR to extend the transcripts, or by confirming expression of the putatively-encoded peptide with specific antibodies
'retained_intron' => 7, # Alternatively spliced transcript believed to contain intronic sequence relative to other, coding, variants
'nonsense_mediated_decay' => 7, # If the coding sequence (following the appropriate reference) of a transcript finishes >50bp from a downstream splice site then it is tagged as NMD. If the variant does not cover the full reference coding sequence then it is annotated as NMD if NMD is unavoidable i.e. no matter what the exon structure of the missing portion is the transcript will be subject to NMD
'non_stop_decay' => 7, # Transcripts that have polyA features (including signal) without a prior stop codon in the CDS, i.e. a non-genomic polyA tail attached directly to the CDS without 3' UTR. These transcripts are subject to degradation
'ambiguous_orf' => 7, # Transcript believed to be protein coding, but with more than one possible open reading frame
'pseudogene' => 8, # Have homology to proteins but generally suffer from a disrupted coding sequence and an active homologous gene can be found at another locus. Sometimes these entries have an intact coding sequence or an open but truncated ORF, in which case there is other evidence used (for example genomic polyA stretches at the 3' end) to classify them as a pseudogene. Can be further classified as one of the following
'processed_pseudogene' => 8, # Pseudogene that lack introns and is thought to arise from reverse transcription of mRNA followed by reinsertion of DNA into the genome
'polymorphic_pseudogene' => 8, # Pseudogene owing to a SNP/DIP but in other individuals/haplotypes/strains the gene is translated
'retrotransposed' => 8, # Pseudogene owing to a reverse transcribed and re-inserted sequence
'translated_processed_pseudogene' => 8, # Pseudogenes that have mass spec data suggesting that they are also translated
'translated_unprocessed_pseudogene' => 8, # Pseudogenes that have mass spec data suggesting that they are also translated
'transcribed_processed_pseudogene' => 8, # Pseudogene where protein homology or genomic structure indicates a pseudogene, but the presence of locus-specific transcripts indicates expression
'transcribed_unprocessed_pseudogene' => 8, # Pseudogene where protein homology or genomic structure indicates a pseudogene, but the presence of locus-specific transcripts indicates expression
'unitary_pseudogene' => 8, # A species specific unprocessed pseudogene without a parent gene, as it has an active orthologue in another species
'unprocessed_pseudogene' => 8, # Pseudogene that can contain introns since produced by gene duplication
'Mt_tRNA_pseudogene' => 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline
'tRNA_pseudogene' => 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline
'snoRNA_pseudogene' => 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline
'snRNA_pseudogene' => 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline
'scRNA_pseudogene' => 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline
'rRNA_pseudogene' => 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline
'misc_RNA_pseudogene' => 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline
'miRNA_pseudogene' => 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline
'IG_C_pseudogene' => 8, # Inactivated immunoglobulin gene
'IG_J_pseudogene' => 8, # Inactivated immunoglobulin gene
'IG_V_pseudogene' => 8, # Inactivated immunoglobulin gene
'TR_J_pseudogene' => 8, # Inactivated immunoglobulin gene
'TR_V_pseudogene' => 8, # Inactivated immunoglobulin gene
'artifact' => 9, # Used to tag mistakes in the public databases (Ensembl/SwissProt/Trembl)
'' => 9
);
$biotype_priority{$biotype} or die "ERROR: Unrecognized biotype \"$biotype\". Please update your hashes!\n";
return $biotype_priority{$biotype};
}
# Check for missing or crappy arguments
unless( @ARGV and $ARGV[0] =~ m/^-/ ) {
pod2usage( -verbose => 0, -message => "$0: Missing or invalid arguments!\n", -exitval => 2 );
}
# Parse options and print usage if there is a syntax error, or if usage was explicitly requested
my ( $man, $help, $use_snpeff ) = ( 0, 0, 0 );
my ( $input_vcf, $vep_anno, $snpeff_anno, $output_maf );
my ( $vcf_tumor_id, $vcf_normal_id );
GetOptions(
'help!' => \$help,
'man!' => \$man,
'input-vcf=s' => \$input_vcf,
'use-snpeff!' => \$use_snpeff,
'input-vep=s' => \$vep_anno,
'input-snpeff=s' => \$snpeff_anno,
'output-maf=s' => \$output_maf,
'tumor-id=s' => \$tumor_id,
'normal-id=s' => \$normal_id,
'vcf-tumor-id=s' => \$vcf_tumor_id,
'vcf-normal-id=s' => \$vcf_normal_id,
'vep-path=s' => \$vep_path,
'vep-data=s' => \$vep_data,
'vep-forks=s' => \$vep_forks,
'ref-fasta=s' => \$ref_fasta,
'snpeff-path=s' => \$snpeff_path,
'snpeff-data=s' => \$snpeff_data,
'snpeff-db=s' => \$snpeff_db,
'ncbi-build=s' => \$ncbi_build,
'maf-center=s' => \$maf_center,
'min-hom-vaf=s' => \$min_hom_vaf
) or pod2usage( -verbose => 1, -input => \*DATA, -exitval => 2 );
pod2usage( -verbose => 1, -input => \*DATA, -exitval => 0 ) if( $help );
pod2usage( -verbose => 2, -input => \*DATA, -exitval => 0 ) if( $man );
# Check for valid input combinations
if(( $input_vcf and $vep_anno ) or ( $input_vcf and $snpeff_anno ) or ( $vep_anno and $snpeff_anno )) {
die "ERROR: Please specify only one input file: input-vcf, input-vep, or input-snpeff\n";
}
elsif( $use_snpeff and ( $vep_anno or $snpeff_anno )) {
die "ERROR: The use-snpeff option can only be used with input-vcf\n";
}
# Unless specified, assume that the VCF uses the same sample IDs that the MAF will contain
$vcf_tumor_id = $tumor_id unless( $vcf_tumor_id );
$vcf_normal_id = $normal_id unless( $vcf_normal_id );
# Annotate variants in given VCF to all possible transcripts, unless an annotated VCF was provided
if( $vep_anno ) {
( -s $vep_anno ) or die "ERROR: Provided VEP-annotated VCF file is missing or empty!\nPath: $vep_anno\n";
( $vep_anno !~ m/\.(gz|bz2|bcf)$/ ) or die "ERROR: Compressed or binary VCFs are not supported\n";
}
elsif( $snpeff_anno ) {
( -s $snpeff_anno ) or die "ERROR: Provided snpEff-annotated VCF file is missing or empty!\nPath: $snpeff_anno\n";
( $snpeff_anno !~ m/\.(gz|bz2|bcf)$/ ) or die "ERROR: Compressed or binary VCFs are not supported\n";
}
elsif( $input_vcf ) {
( -s $input_vcf ) or die "ERROR: Provided VCF file is missing or empty!\nPath: $input_vcf\n";
( $input_vcf !~ m/\.(gz|bz2|bcf)$/ ) or die "ERROR: Compressed or binary VCFs are not supported\n";
# Run snpEff if user specifically asks for it. Otherwise, run VEP by default
if( $use_snpeff ) {
$snpeff_anno = $input_vcf;
$snpeff_anno =~ s/(\.vcf)*$/.snpeff.vcf/;
# Skip running snpEff if a snpEff-annotated VCF already exists
if( -s $snpeff_anno ) {
warn "WARNING: Annotated VCF already exists ($snpeff_anno). Skipping re-annotation.\n";
}
else {
warn "STATUS: Running snpEff and writing to: $snpeff_anno\n";
# Make sure we can find the snpEff jar file and config
unless( glob "$snpeff_path/snpEff.jar" and glob "$snpeff_path/snpEff.config" ) {
die "ERROR: Cannot find snpEff jar or config in path: $snpeff_path\n";
}
# Contruct snpEff command using some default options and run it
my $snpeff_cmd = "java -Xmx4g -jar $snpeff_path/snpEff.jar eff -config $snpeff_path/snpEff.config -dataDir $snpeff_data -noStats -sequenceOntology -hgvs $snpeff_db $input_vcf > $snpeff_anno";
system( $snpeff_cmd ) == 0 or die "\nERROR: Failed to run the snpEff annotator!\nCommand: $snpeff_cmd\n";
( -s $snpeff_anno ) or warn "WARNING: snpEff-annotated VCF file is missing or empty!\nPath: $snpeff_anno\n";
}
}
else {
$vep_anno = $input_vcf;
$vep_anno =~ s/(\.vcf)*$/.vep.vcf/;
# Skip running VEP if a VEP-annotated VCF already exists
if( -s $vep_anno ) {
warn "WARNING: Annotated VCF already exists ($vep_anno). Skipping re-annotation.\n";
}
else {
warn "STATUS: Running VEP and writing to: $vep_anno\n";
# Make sure we can find the VEP script and the reference FASTA
( -s "$vep_path/variant_effect_predictor.pl" ) or die "ERROR: Cannot find VEP script variant_effect_predictor.pl in path: $vep_path\n";
( -s $ref_fasta ) or die "ERROR: Reference FASTA not found: $ref_fasta\n";
# Contruct VEP command using some default options and run it
my $vep_cmd = "perl $vep_path/variant_effect_predictor.pl --quiet --fork $vep_forks --offline --no_stats --everything --check_existing --total_length --allele_number --no_escape --gencode_basic --xref_refseq --assembly $ncbi_build --dir $vep_data --fasta $ref_fasta --vcf --input_file $input_vcf --output_file $vep_anno";
system( $vep_cmd ) == 0 or die "\nERROR: Failed to run the VEP annotator!\nCommand: $vep_cmd\n";
( -s $vep_anno ) or warn "WARNING: VEP-annotated VCF file is missing or empty!\nPath: $vep_anno\n";
}
}
}
else {
die "ERROR: Please specify an input file: input-vcf, input-vep, or input-snpeff. STDIN is not supported.\n";
}
# Define default MAF Header (https://wiki.nci.nih.gov/x/eJaPAQ) with our vcf2maf additions
my @maf_header = qw(
Hugo_Symbol Entrez_Gene_Id Center NCBI_Build Chromosome Start_Position End_Position Strand
Variant_Classification Variant_Type Reference_Allele Tumor_Seq_Allele1 Tumor_Seq_Allele2
dbSNP_RS dbSNP_Val_Status Tumor_Sample_Barcode Matched_Norm_Sample_Barcode
Match_Norm_Seq_Allele1 Match_Norm_Seq_Allele2 Tumor_Validation_Allele1 Tumor_Validation_Allele2
Match_Norm_Validation_Allele1 Match_Norm_Validation_Allele2 Verification_Status
Validation_Status Mutation_Status Sequencing_Phase Sequence_Source Validation_Method Score
BAM_File Sequencer Tumor_Sample_UUID Matched_Norm_Sample_UUID HGVSc HGVSp HGVSp_Short Transcript_ID
Exon_Number t_depth t_ref_count t_alt_count n_depth n_ref_count n_alt_count all_effects PhredQualScore GATKFilter GATKGenotype
GenotypeQuality PhredLikelihoods MappingQualZero_Count
);
# Add extra columns to the MAF depending on whether we used VEP or snpEff
my @vepcsq_cols = qw( Allele Gene Feature Feature_type Consequence cDNA_position CDS_position
Protein_position Amino_acids Codons Existing_variation ALLELE_NUM DISTANCE STRAND SYMBOL
SYMBOL_SOURCE HGNC_ID BIOTYPE CANONICAL CCDS ENSP SWISSPROT TREMBL UNIPARC RefSeq SIFT PolyPhen
EXON INTRON DOMAINS GMAF AFR_MAF AMR_MAF ASN_MAF EUR_MAF AA_MAF EA_MAF CLIN_SIG SOMATIC PUBMED
MOTIF_NAME MOTIF_POS HIGH_INF_POS MOTIF_SCORE_CHANGE );
my @vepcsq_cols_format; # To store the actual order of VEP data, that may differ between runs
my @snpeff_cols = qw( Effect Effect_Impact Functional_Class Codon_Change Amino_Acid_Change
Amino_Acid_Length Gene_Name Transcript_BioType Gene_Coding Transcript_ID Exon_Rank
Genotype_Number ERRORS WARNINGS );
push( @maf_header, ( $vep_anno ? @vepcsq_cols : @snpeff_cols ));
# Parse through each variant in the annotated VCF, pull out CSQ/EFF from the INFO column, and choose
# one transcript per variant whose annotation will be used in the MAF
my $maf_fh = *STDOUT; # Use STDOUT if an output MAF file was not defined
$maf_fh = IO::File->new( $output_maf, ">" ) or die "ERROR: Couldn't open output file: $output_maf!\n" if( $output_maf );
$maf_fh->print( "#version 2.4\n" . join( "\t", @maf_header ), "\n" ); # Print MAF header
my $vcf_file = ( $vep_anno ? $vep_anno : $snpeff_anno );
( -s $vcf_file ) or exit; # Warnings on this were printed earlier, but quit here, only after a blank MAF is created
my $vcf_fh = IO::File->new( $vcf_file ) or die "ERROR: Couldn't open annotated VCF: $vcf_file!\n";
my ( $vcf_tumor_idx, $vcf_normal_idx );
while( my $line = $vcf_fh->getline ) {
# Parse out the VEP CSQ format, which seems to differ between runs
if( $line =~ m/^##INFO=<ID=CSQ.*Format: (\S+)">$/ ) {
@vepcsq_cols_format = split( /\|/, $1 );
}
# Skip all other header lines
next if( $line =~ m/^##/ );
chomp( $line );
my ( $chrom, $pos, $ids, $ref, $alt, $qual, $filter, $info_line, $format_line, @rest ) = split( /\t/, $line );
# If FORMATted genotype fields are available, find the sample with the variant, and matched normal
if( $line =~ m/^#CHROM/ ) {
if( $format_line and scalar( @rest ) > 0 ) {
for( my $i = 0; $i <= $#rest; ++$i ) {
$vcf_tumor_idx = $i if( $rest[$i] eq $vcf_tumor_id );
$vcf_normal_idx = $i if( $rest[$i] eq $vcf_normal_id );
}
( defined $vcf_tumor_idx ) or warn "WARNING: No genotype column for $vcf_tumor_id in VCF!\n";
( defined $vcf_normal_idx ) or warn "WARNING: No genotype column for $vcf_normal_id in VCF!\n";
}
next;
}
# Parse out the data in the info column, and store into a hash
my %info = map {( m/=/ ? ( split( /=/, $_, 2 )) : ( $_, 1 ))} split( /\;/, $info_line );
# By default, the variant allele is the first (usually the only) allele listed under ALT
# If there are multiple ALT alleles, we will choose the allele specified in the tumor GT field
# If tumor GT undefined or ambiguous, we will choose the one with the most supporting read depth
my @alleles = ( $ref, split( /,/, $alt ));
my $var_allele_idx = 1;
# Parse out info from the tumor genotype field
my ( %tum_info, @tum_depths );
my $raw_genotype = "NA";
my $genotype_qual = "NA";
my $phredlikelihoods_str = "NA";
if( defined $vcf_tumor_idx ) {
my @format_keys = split( /\:/, $format_line );
my $idx = 0;
%tum_info = map {( $format_keys[$idx++], $_ )} split( /\:/, $rest[$vcf_tumor_idx] );
# If possible, parse the tumor genotype to identify the variant allele
if( defined $tum_info{GT} and $tum_info{GT} ne "." and $tum_info{GT} ne "./." ) {
$raw_genotype = $tum_info{GT};
my @genotype = split( /[\/|]/, $tum_info{GT} );
# In case of polyploid calls, choose the first non-REF allele, if any
( $var_allele_idx ) = grep {$_ ne "0"} @genotype;
$var_allele_idx = 1 unless( defined $var_allele_idx and $var_allele_idx =~ m/^\d+$/ );
}
if (defined $tum_info{GQ} and $tum_info{GQ} ne ".") {
$genotype_qual = $tum_info{GQ};
}
if (defined $tum_info{PL} and $tum_info{PL} ne ".") {
$phredlikelihoods_str = $tum_info{PL};
}
# If AD is defined, then parse out all REF/ALT allele depths, or whatever is in it
if( defined $tum_info{AD} and $tum_info{AD} ne "." ) {
@tum_depths = map{( m/^\d+$/ ? $_ : "" )}split( /,/, $tum_info{AD} );
}
# Handle VarScan VCF lines where AD contains only 1 depth, and REF allele depth is in RD
if( scalar( @tum_depths ) == 1 and defined $tum_info{RD} ) {
@tum_depths = map{""} @alleles;
$tum_depths[0] = $tum_info{RD};
$tum_depths[$var_allele_idx] = $tum_info{AD};
}
# Handle SomaticSniper VCF lines, where allele depths must be extracted from BCOUNT
elsif( defined $tum_info{BCOUNT} ) {
my %b_idx = ( A=>0, C=>1, G=>2, T=>3 );
my @bcount = split( /,/, $tum_info{BCOUNT} );
@tum_depths = map{(( defined $b_idx{$_} and defined $bcount[$b_idx{$_}] ) ? $bcount[$b_idx{$_}] : "" )} @alleles;
}
# Handle VCF SNV lines by Strelka, where allele depths are in AU:CU:GU:TU
elsif( scalar( grep{defined $tum_info{$_}} qw/AU CU GU TU/ ) == 4 ) {
# Strelka allele depths come in tiers 1,2. We'll use tier1 cuz it's stricter, and DP already is
map{( $tum_info{$_.'U'} ) = split( ",", $tum_info{$_.'U'} )} qw( A C G T );
# If the ALT allele is just N, then set it to the allele with the highest non-ref readcount
if( scalar( @alleles ) == 2 and $alleles[1] eq "N" ) {
my %acgt_depths = map{( defined $tum_info{$_.'U'} ? ( $_, $tum_info{$_.'U'} ) : ( $_, "" ))} qw( A C G T );
my @deepest = sort {$acgt_depths{$b} <=> $acgt_depths{$a}} keys %acgt_depths;
( $alleles[1] ) = ( $deepest[0] ne $ref ? $deepest[0] : $deepest[1] );
}
@tum_depths = map{( defined $tum_info{$_.'U'} ? $tum_info{$_.'U'} : "" )} @alleles;
}
# Handle VCF Indel lines by Strelka, where variant allele depth is in TIR
elsif( $tum_info{TIR} ) {
# Reference allele depth is not provided by Strelka for indels, so we have to skip it
@tum_depths = ( "", ( split /,/, $tum_info{TIR} )[0] );
}
# Handle VCF lines from the Ion Torrent Suite where ALT depths are in AO and REF depths are in RO
elsif( defined $tum_info{AO} and defined $tum_info{RO} ) {
@tum_depths = ( $tum_info{RO}, map{( m/^\d+$/ ? $_ : "" )}split( /,/, $tum_info{AO} ));
}
# Handle VCF lines with ALT allele-frac in FA, which needs to be multiplied by DP to get AD
elsif( defined $tum_info{FA} and defined $tum_info{DP} and $tum_info{DP} ne '.' ) {
# Reference allele depth and depths for any other ALT alleles must be left undefined
@tum_depths = map{""} @alleles;
$tum_depths[$var_allele_idx] = sprintf( "%.0f", $tum_info{FA} * $tum_info{DP} );
}
# Handle VCF lines where AD contains only 1 value, that we can assume is the variant allele
elsif( defined $tum_info{AD} and @tum_depths and scalar( @tum_depths ) == 1 ) {
# Reference allele depth and depths for any other ALT alleles must be left undefined
@tum_depths = map{""} @alleles;
$tum_depths[$var_allele_idx] = $tum_info{AD};
}
# For all other lines where #depths is not equal to #alleles, blank out the depths
elsif( @tum_depths and $#tum_depths != $#alleles ) {
warn "WARNING: Unusual AD format for alleles $ref,$alt in $format_line = " . $rest[$vcf_tumor_idx] . "\n";
@tum_depths = map{""} @alleles;
}
# Sanity check that REF/ALT allele depths are lower than the total depth
if( defined $tum_info{DP} and $tum_info{DP} ne '.' and (( $tum_depths[0] and $tum_depths[0] > $tum_info{DP} ) or
( $tum_depths[$var_allele_idx] and $tum_depths[$var_allele_idx] > $tum_info{DP} ) or
( $tum_depths[0] and $tum_depths[$var_allele_idx] and $tum_depths[0] + $tum_depths[$var_allele_idx] > $tum_info{DP} ))) {
warn "WARNING: AD of alleles $ref,$alt exceed DP. Setting DP to sum of allele depths in $format_line = " . $rest[$vcf_tumor_idx] . "\n";
$tum_info{DP} = 0;
map{$tum_info{DP} += $_ if($_ and $_ ne '.')} @tum_depths;
}
# If we have REF/ALT allele depths, but no DP, then set DP equal to the sum of all ADs
if(( $tum_depths[0] and $tum_depths[$var_allele_idx] ) and ( !defined $tum_info{DP} or $tum_info{DP} eq '.' )) {
warn "WARNING: DP undefined but ADs available. Setting DP to sum of allele depths in $format_line = " . $rest[$vcf_tumor_idx] . "\n";
$tum_info{DP} = 0;
map{$tum_info{DP} += $_ if($_ and $_ ne '.')} @tum_depths;
}
# If genotype is undefined, use the allele depths collected to choose the major variant allele
unless( defined $tum_info{GT} and $tum_info{GT} ne '.' and $tum_info{GT} ne "./." ) {
# The first depth listed belongs to the reference allele. Of the rest, find the largest
for( my $i = 1; $i <= $#tum_depths; ++$i ) {
$var_allele_idx = $i if( $tum_depths[$i] and $tum_depths[$i] > $tum_depths[$var_allele_idx] );
}
}
}
# Set the variant allele to whatever we selected above
my $var = $alleles[$var_allele_idx];
# Unless GT is defined, assign het/hom status based on a simple variant allele fraction cutoff
unless( defined $tum_info{GT} and $tum_info{GT} ne "." and $tum_info{GT} ne "./." ) {
$tum_info{GT} = "./.";
if( defined $tum_info{DP} and $tum_info{DP} != 0 and defined $tum_depths[$var_allele_idx] ) {
my $vaf = $tum_depths[$var_allele_idx] / $tum_info{DP};
$tum_info{GT} = ( $vaf < $min_hom_vaf ? "0/1" : "1/1" );
}
}
# Same as above, parse out info from the normal genotype field
my ( %nrm_info, @nrm_depths );
if( defined $vcf_normal_idx ) {
my @format_keys = split( /\:/, $format_line );
my $idx = 0;
%nrm_info = map {( $format_keys[$idx++], $_ )} split( /\:/, $rest[$vcf_normal_idx] );
# If AD is defined, then parse out all REF/ALT allele depths, or whatever is in it
if( defined $nrm_info{AD} and $nrm_info{AD} ne "." ) {
@nrm_depths = map{( m/^\d+$/ ? $_ : "" )}split( /,/, $nrm_info{AD} );
}
# Handle VCF lines by VarScan where REF allele depth is stored separately in an RD tag
if( scalar( @nrm_depths ) == 1 and defined $nrm_info{RD} ) {
@nrm_depths = map{""} @alleles;
$nrm_depths[0] = $nrm_info{RD};
$nrm_depths[$var_allele_idx] = $nrm_info{AD};
}
# Handle VCF lines by SomaticSniper, where allele depths must be extracted from BCOUNT
elsif( defined $nrm_info{BCOUNT} ) {
my %b_idx = ( A=>0, C=>1, G=>2, T=>3 );
my @bcount = split( /,/, $nrm_info{BCOUNT} );
@nrm_depths = map{(( defined $b_idx{$_} and defined $bcount[$b_idx{$_}] ) ? $bcount[$b_idx{$_}] : "" )} @alleles;
}
# Handle VCF SNV lines by Strelka, where allele depths are in AU:CU:GU:TU
elsif( scalar( grep{defined $nrm_info{$_}} qw/AU CU GU TU/ ) == 4 ) {
# Strelka allele depths come in tiers 1,2. We'll use tier1 cuz it's stricter, and DP already is
map{( $nrm_info{$_.'U'} ) = split( ",", $nrm_info{$_.'U'} )} qw( A C G T );
# If the ALT allele is just N, then set it to the allele with the highest non-ref readcount
if( scalar( @alleles ) == 2 and $alleles[1] eq "N" ) {
my %acgt_depths = map{( defined $nrm_info{$_.'U'} ? ( $_, $nrm_info{$_.'U'} ) : ( $_, "" ))} qw( A C G T );
my @deepest = sort {$acgt_depths{$b} <=> $acgt_depths{$a}} keys %acgt_depths;
( $alleles[1] ) = ( $deepest[0] ne $ref ? $deepest[0] : $deepest[1] );
}
@nrm_depths = map{( defined $nrm_info{$_.'U'} ? $nrm_info{$_.'U'} : "" )} @alleles;
}
# Handle VCF Indel lines by Strelka, where variant allele depth is in TIR
elsif( $nrm_info{TIR} ) {
# Reference depth is not explicitly defined by Strelka for indels, so we have to skip it
@nrm_depths = ( "", ( split /,/, $nrm_info{TIR} )[0] );
}
# Handle VCF lines from the Ion Torrent Suite where ALT depths are in AO and REF depths are in RO
elsif( defined $nrm_info{AO} and defined $nrm_info{RO} ) {
@nrm_depths = ( $nrm_info{RO}, map{( m/^\d+$/ ? $_ : "" )}split( /,/, $nrm_info{AO} ));
}
# Handle VCF lines with ALT allele-frac in FA, which needs to be multiplied by DP to get AD
elsif( defined $nrm_info{FA} and defined $nrm_info{DP} and $nrm_info{DP} ne '.' ) {
# Reference allele depth and depths for any other ALT alleles must be left undefined
@nrm_depths = map{""} @alleles;
$nrm_depths[$var_allele_idx] = sprintf( "%.0f", $nrm_info{FA} * $nrm_info{DP} );
}
# Handle VCF lines where AD contains only 1 value, that we can assume is the variant allele
elsif( defined $nrm_info{AD} and @nrm_depths and scalar( @nrm_depths ) == 1 ) {
# Reference allele depth and depths for any other ALT alleles must be left undefined
@nrm_depths = map{""} @alleles;
$nrm_depths[$var_allele_idx] = $nrm_info{AD};
}
# For all other lines where #depths is not equal to #alleles, blank out the depths
elsif( @nrm_depths and $#nrm_depths != $#alleles ) {
warn "WARNING: Unusual AD format for alleles $ref,$alt in $format_line = " . $rest[$vcf_normal_idx] . "\n";
@nrm_depths = map{""} @alleles;
}
# Sanity check that REF/ALT allele depths are lower than the total depth
if( defined $nrm_info{DP} and $nrm_info{DP} ne '.' and (( $nrm_depths[0] and $nrm_depths[0] > $nrm_info{DP} ) or
( $nrm_depths[$var_allele_idx] and $nrm_depths[$var_allele_idx] > $nrm_info{DP} ) or
( $nrm_depths[0] and $nrm_depths[$var_allele_idx] and $nrm_depths[0] + $nrm_depths[$var_allele_idx] > $nrm_info{DP} ))) {
warn "WARNING: AD of alleles $ref,$alt exceed DP. Setting DP to sum of allele depths in $format_line = " . $rest[$vcf_normal_idx] . "\n";
$nrm_info{DP} = 0;
map{$nrm_info{DP} += $_ if($_ and $_ ne '.')} @nrm_depths;
}
# If we have REF/ALT allele depths, but no DP, then set DP equal to the sum of all ADs
if(( $nrm_depths[0] and $nrm_depths[$var_allele_idx] ) and ( !defined $nrm_info{DP} or $nrm_info{DP} eq '.' )) {
warn "WARNING: DP undefined but ADs available. Setting DP to sum of allele depths in $format_line = " . $rest[$vcf_normal_idx] . "\n";
$nrm_info{DP} = 0;
map{$nrm_info{DP} += $_ if($_ and $_ ne '.')} @nrm_depths;
}
}
# Figure out the appropriate start/stop loci and variant type/allele to report in the MAF
my $start = my $stop = my $var_type = "";
my ( $ref_length, $var_length ) = ( length( $ref ), length( $var ));
# Handle SNPs, DNPs, TNPs, or anything larger (ONP)
if( $ref_length == $var_length ) {
( $start, $stop ) = ( $pos, $pos + $var_length - 1 );
my %np_type = qw( 1 SNP 2 DNP 3 TNP );
$var_type = ( $var_length > 3 ? "ONP" : $np_type{$var_length} );
}
# Handle all indels, including those complex ones which contain substitutions
elsif( $ref_length != $var_length ) {
# Remove the prefixed reference bp from all alleles, using "-" for simple indels
( $ref, $var, @alleles ) = map{$_ = substr( $_, 1 ); ( $_ ? $_ : "-" )} ( $ref, $var, @alleles );
--$ref_length; --$var_length;
if( $ref_length < $var_length ) { # Handle insertions, and the special case for complex ones
( $start, $stop ) = ( $pos, ( $ref eq "-" ? $pos + 1 : $pos + $ref_length ));
$var_type = "INS";
}
else { # Handle deletions
( $start, $stop ) = ( $pos + 1, $pos + $ref_length );
$var_type = "DEL";
}
}
my @all_effects; # A list of effects of this variant on all possible transcripts
my $maf_effect; # A single effect per variant to report in the standard MAF columns
my %maf_line = map{( $_, '' )} @maf_header; # Initialize MAF fields with blank strings
### Parsing VEP consequences
# INFO:CSQ is a comma-delim list of VEP consequences, with pipe-delim details per consequence
# VEP replaces ',' in details with '&'. We'll assume that all '&'s we see, were formerly commas
# "Consequence" might list multiple effects on the same transcript e.g. missense,splice_region
if( $info{CSQ} ) {
foreach my $csq_line ( split( /,/, $info{CSQ} )) {
my $idx = 0;
my %effect = map{s/\&/,/g; ( $vepcsq_cols_format[$idx++], ( defined $_ ? $_ : '' ))} split( /\|/, $csq_line );
# Remove transcript ID from HGVS codon/protein changes, to make it easier on the eye
$effect{HGVSc} =~ s/^.*:// if( $effect{HGVSc} );
$effect{HGVSp} =~ s/^.*:// if( $effect{HGVSp} );
# Remove the prefixed HGVSc code in HGVSp, if found
$effect{HGVSp} =~ s/^.*\((p\.\S+)\)/$1/ if( $effect{HGVSp} and $effect{HGVSp} =~ m/^c\./ );
# If there are several consequences listed for a transcript, choose the most severe one
( $effect{Consequence} ) = sort { GetEffectPriority($a) <=> GetEffectPriority($b) } split( /,/, $effect{Consequence} );
# When VEP fails to provide any value in Consequence, tag it as an intergenic variant
$effect{Consequence} = "intergenic_variant" unless( $effect{Consequence} );
# Create a shorter HGVS protein format using 1-letter codes
if( $effect{HGVSp} ) {
my $hgvs_p_short = $effect{HGVSp};
while( $hgvs_p_short and my ( $find, $replace ) = each %aa3to1 ) {
eval "\$hgvs_p_short =~ s{$find}{$replace}g";
}
$effect{HGVSp_Short} = $hgvs_p_short;
}
# Fix HGVSp_Short, CDS_position, and Protein_position for splice acceptor/donor variants
if( $effect{Consequence} =~ m/^(splice_acceptor_variant|splice_donor_variant)$/ ) {
my ( $c_pos ) = $effect{HGVSc} =~ m/^c.(\d+)/;
if( defined $c_pos ) {
$c_pos = 1 if( $c_pos < 1 ); # Handle negative cDNA positions used in 5' UTRs
my $p_pos = sprintf( "%.0f", ( $c_pos + $c_pos % 3 ) / 3 );
$effect{HGVSp_Short} = "p.X" . $p_pos . "_splice";
$effect{CDS_position} =~ s/^-(\/\d+)$/$c_pos$1/;
$effect{Protein_position} =~ s/^-(\/\d+)$/$p_pos$1/;
}
}
# Fix HGVSp_Short for Silent mutations, so it mentions the amino-acid and position
if( $effect{Consequence} eq "synonymous_variant" ) {
my ( $p_pos ) = $effect{Protein_position} =~ m/^(\d+)\/\d+$/;
my $aa = $effect{Amino_acids};
$effect{HGVSp_Short} = "p.$aa" . $p_pos . $aa;
}
# Copy VEP CSQ data into MAF fields that don't share the same identifier
$effect{Transcript_ID} = $effect{Feature};
$effect{Exon_Number} = $effect{EXON};
$effect{Hugo_Symbol} = ( $effect{SYMBOL} ? $effect{SYMBOL} : '' );
# If VEP couldn't find this variant in dbSNP/COSMIC/etc., we'll say it's "novel"
if( $effect{Existing_variation} ) {
# ::NOTE:: If seen in a DB other than dbSNP, this field will remain blank
$effect{dbSNP_RS} = join( ",", grep{m/^rs\d+$/} split( /,/, $effect{Existing_variation} ));
}
else {
$effect{dbSNP_RS} = "novel";
}
# Transcript_Length isn't separately reported, but can be parsed out from cDNA_position
( $effect{Transcript_Length} ) = $effect{cDNA_position} =~ m/\/(\d+)$/;
$effect{Transcript_Length} = 0 unless( defined $effect{Transcript_Length} );
# Skip effects on other ALT alleles
push( @all_effects, \%effect ) if( $effect{ALLELE_NUM} == $var_allele_idx );
}
# Sort effects first by transcript biotype, then by severity, and then by longest transcript
@all_effects = sort {
GetBiotypePriority( $a->{BIOTYPE} ) <=> GetBiotypePriority( $b->{BIOTYPE} ) ||
GetEffectPriority( $a->{Consequence} ) <=> GetEffectPriority( $b->{Consequence} ) ||
$b->{Transcript_Length} <=> $a->{Transcript_Length}
} @all_effects;
# Find the highest priority effect with a gene symbol (usually the first one)
my ( $effect_with_gene_name ) = grep { $_->{SYMBOL} } @all_effects;
my $maf_gene = $effect_with_gene_name->{SYMBOL} if( $effect_with_gene_name );
# Find the effect on the canonical transcript of that highest priority gene
( $maf_effect ) = grep { $_->{SYMBOL} and $_->{SYMBOL} eq $maf_gene and $_->{CANONICAL} and $_->{CANONICAL} eq "YES" } @all_effects;
# If that gene has no canonical transcript tagged, choose the highest priority canonical effect on any gene
( $maf_effect ) = grep { $_->{CANONICAL} and $_->{CANONICAL} eq "YES" } @all_effects unless( $maf_effect );
# If none of the effects are tagged as canonical, then just report the top priority effect
$maf_effect = $all_effects[0] unless( $maf_effect );
}
### Parsing snpEff effects
# INFO:EFF is a comma-delimited list of snpEff effects, with pipe-delim details per effect
# But note the parentheses, the Effect defined separately, and the last two columns being optional
# Only AA lengths for coding transcripts are provided. So we're SOL for non-coding transcripts
# EFF = Effect ( Effect_Impact | Functional_Class | Codon_Change | Amino_Acid_Change | Amino_Acid_Length | Gene_Name | Transcript_BioType | Gene_Coding | Transcript_ID | Exon_Rank | Genotype_Number [ | ERRORS | WARNINGS ] ) , ...
elsif( $info{EFF} ) {
foreach my $eff_line ( split( /,/, $info{EFF} )) {
if( $eff_line =~ /^(\w+)\((.+)\)$/ ) {
my $idx = 0;
my %effect = map{( $snpeff_cols[$idx++], ( defined $_ ? $_ : '' ))} ( $1, split( /\|/, $2 ));
# Copy snpEff EFF data into MAF fields that don't share the same identifier
$effect{Exon_Number} = $effect{Exon_Rank};
$effect{Hugo_Symbol} = ( $effect{Gene_Name} ? $effect{Gene_Name} : '' );
# HGVS formatted codon/protein changes need to be parsed out of Amino_Acid_Change
( $effect{HGVSp}, $effect{HGVSc} ) = $effect{Amino_Acid_Change} =~ m/^(.*)\/(.*)$/;
$effect{HGVSc} = '' unless( $effect{HGVSc} );
$effect{HGVSp} = '' unless( $effect{HGVSp} );
# When snpEff fails to provide any value in Effect, tag it as an intergenic variant
$effect{Effect} = "intergenic_variant" unless( $effect{Effect} );
# Create a shorter HGVS protein format using 1-letter codes
if( $effect{HGVSp} ) {
my $hgvs_p_short = $effect{HGVSp};
while( $hgvs_p_short and my ( $find, $replace ) = each %aa3to1 ) {
eval "\$hgvs_p_short =~ s{$find}{$replace}g";
}
$effect{HGVSp_Short} = $hgvs_p_short;
}
# Fix HGVSp_Short, CDS_position, and Protein_position for splice acceptor/donor variants
if( $effect{Effect} =~ m/^(splice_acceptor_variant|splice_donor_variant)$/ ) {
my ( $c_pos ) = $effect{HGVSc} =~ m/^c.(\d+)/;
if( defined $c_pos ) {
$c_pos = 1 if( $c_pos < 1 ); # Handle negative cDNA positions used in 5' UTRs
my $p_pos = sprintf( "%.0f", ( $c_pos + $c_pos % 3 ) / 3 );
$effect{HGVSp_Short} = "p.X" . $p_pos . "_splice";
$effect{CDS_position} =~ s/^-(\/\d+)$/$c_pos$1/;
$effect{Protein_position} =~ s/^-(\/\d+)$/$p_pos$1/;
}
}
# Fix HGVSp_Short for Silent mutations, so it mentions the amino-acid and position
if( $effect{Effect} eq "synonymous_variant" ) {
my ( $p_pos ) = $effect{Protein_position} =~ m/^(\d+)\/\d+$/;
my $aa = $effect{Amino_acids};
$effect{HGVSp_Short} = "p.$aa" . $p_pos . $aa;
}
# Transcript length isn't reported, so we have to use AA length, where available
$effect{Amino_Acid_Length} = 0 unless( $effect{Amino_Acid_Length} );
# Skip effects on other ALT alleles
push( @all_effects, \%effect ) if( $effect{Genotype_Number} == $var_allele_idx );
}
}
# Sort effects first by transcript biotype, then by severity, and then by longest transcript
@all_effects = sort {
GetBiotypePriority( $a->{Transcript_BioType} ) <=> GetBiotypePriority( $b->{Transcript_BioType} ) ||
GetEffectPriority( $a->{Effect} ) <=> GetEffectPriority( $b->{Effect} ) ||
$b->{Amino_Acid_Length} <=> $a->{Amino_Acid_Length}
} @all_effects;
# Find the highest priority effect with a gene symbol (usually the first one)
my ( $effect_with_gene_name ) = grep { $_->{Gene_Name} } @all_effects;
my $maf_gene = $effect_with_gene_name->{Gene_Name} if( $effect_with_gene_name );
# Find the effect on the longest transcript of that highest priority gene
( $maf_effect ) = sort { $b->{Amino_Acid_Length} <=> $a->{Amino_Acid_Length} } grep { $_->{Gene_Name} eq $maf_gene } @all_effects;
}
# Extract MQ0 information
my $mq0 = "NA";
if ( $info{MQ0} ) {
$mq0 = $info{MQ0};
}
# Construct the MAF columns from the $maf_effect hash, and print to output
%maf_line = map{( $_, ( $maf_effect->{$_} ? $maf_effect->{$_} : '' ))} @maf_header;
$maf_line{Hugo_Symbol} = 'Unknown' unless( $maf_effect->{Hugo_Symbol} );
$maf_line{Entrez_Gene_Id} = '0';
$maf_line{Center} = $maf_center;
$maf_line{NCBI_Build} = $ncbi_build;
$maf_line{Chromosome} = $chrom;
$maf_line{Start_Position} = $start;
$maf_line{End_Position} = $stop;
$maf_line{Strand} = '+'; # Per MAF definition, only the positive strand is an accepted value
my $so_effect = ( $maf_effect->{Effect} ? $maf_effect->{Effect} : $maf_effect->{Consequence} );
$maf_line{Variant_Classification} = GetVariantClassification( $so_effect, $var_type);
$maf_line{Variant_Type} = $var_type;
$maf_line{Reference_Allele} = $ref;
# ::NOTE:: If tumor genotype is unavailable, then we'll assume it's ref/var heterozygous
$maf_line{Tumor_Seq_Allele1} = $ref;
$maf_line{Tumor_Seq_Allele2} = $var;
if( defined $tum_info{GT} and $tum_info{GT} ne "." and $tum_info{GT} ne "./." ) {
# ::NOTE:: MAF only supports biallelic sites. Tumor_Seq_Allele2 must always be the $var
# picked earlier. For Tumor_Seq_Allele1, pick the first non-var allele in GT (usually $ref)
my ( $idx1, $idx2 ) = split( /[\/|]/, $tum_info{GT} );
# If GT was monoploid, then $idx2 will undefined, and we should set it equal to $idx1
$idx2 = $idx1 unless( defined $idx2 );
$maf_line{Tumor_Seq_Allele1} = ( $alleles[$idx1] ne $var ? $alleles[$idx1] : $alleles[$idx2] );
}
# ::NOTE:: If normal genotype is unavailable, then we'll assume it's ref/ref homozygous
$maf_line{Match_Norm_Seq_Allele1} = $ref;
$maf_line{Match_Norm_Seq_Allele2} = $ref;
if( defined $nrm_info{GT} and $nrm_info{GT} ne "." and $nrm_info{GT} ne "./." ) {
# ::NOTE:: MAF only supports biallelic sites. So choose the first two alleles listed in GT
my ( $idx1, $idx2 ) = split( /[\/|]/, $nrm_info{GT} );
# If GT was monoploid, then $idx2 will undefined, and we should set it equal to $idx1
$idx2 = $idx1 unless( defined $idx2 );
$maf_line{Match_Norm_Seq_Allele1} = $alleles[$idx1];
$maf_line{Match_Norm_Seq_Allele2} = $alleles[$idx2];
}
$maf_line{Tumor_Sample_Barcode} = $tumor_id;
$maf_line{Matched_Norm_Sample_Barcode} = $normal_id;
$maf_line{t_depth} = $tum_info{DP} if( defined $tum_info{DP} and $tum_info{DP} ne "." );
( $maf_line{t_ref_count}, $maf_line{t_alt_count} ) = @tum_depths[0,$var_allele_idx] if( @tum_depths );
$maf_line{n_depth} = $nrm_info{DP} if( defined $nrm_info{DP} and $nrm_info{DP} ne "." );
( $maf_line{n_ref_count}, $maf_line{n_alt_count} ) = @nrm_depths[0,$var_allele_idx] if( @nrm_depths );
# Create a semicolon delimited list summarizing the prioritized effects in @all_effects
$maf_line{all_effects} = "";
foreach my $effect ( @all_effects ) {
my $gene_name = $effect->{Hugo_Symbol};
my $effect_type = ( $effect->{Effect} ? $effect->{Effect} : $effect->{Consequence} );
my $protein_change = ( $effect->{HGVSp} ? $effect->{HGVSp} : '' );
my $transcript_id = ( $effect->{Transcript_ID} ? $effect->{Transcript_ID} : '' );
$maf_line{all_effects} .= "$gene_name,$effect_type,$protein_change,$transcript_id;" if( $gene_name and $effect_type and $transcript_id );
}
$maf_line{PhredQualScore} = $qual;
$maf_line{GATKFilter} = $filter;
$maf_line{GATKGenotype} = $raw_genotype;
$maf_line{GenotypeQuality} = $genotype_qual;
$maf_line{PhredLikelihoods} = $phredlikelihoods_str;
$maf_line{MappingQualZero_Count} = $mq0;
# At this point, we've generated all we can about this variant, so write it to the MAF
$maf_fh->print( join( "\t", map{ $maf_line{$_} } @maf_header ) . "\n" );
}
$maf_fh->close if( $output_maf );
$vcf_fh->close;
# Converts Sequence Ontology variant types to MAF variant classifications
sub GetVariantClassification {
my ( $effect, $var_type ) = @_;
return "Splice_Site" if( $effect =~ /^(splice_acceptor_variant|splice_donor_variant|transcript_ablation)$/ );
return "Nonsense_Mutation" if( $effect eq 'stop_gained' );
return "Frame_Shift_Del" if ( $effect eq 'frameshift_variant' and $var_type eq 'DEL' );
return "Frame_Shift_Ins" if( $effect eq 'frameshift_variant' and $var_type eq 'INS' );
return "Nonstop_Mutation" if( $effect eq 'stop_lost' );
return "Translation_Start_Site" if( $effect =~ /^(initiator_codon_variant|start_lost)$/ );
return "In_Frame_Ins" if( $effect eq 'inframe_insertion' );
return "In_Frame_Del" if( $effect eq 'inframe_deletion' );
return "Missense_Mutation" if( $effect =~ /^(missense_variant|coding_sequence_variant|conservative_missense_variant|rare_amino_acid_variant)$/ );
return "Intron" if ( $effect =~ /^(transcript_amplification|splice_region_variant|intron_variant|INTRAGENIC|intragenic_variant)$/ );
return "Silent" if( $effect =~ /^(incomplete_terminal_codon_variant|synonymous_variant|stop_retained_variant|NMD_transcript_variant)$/ );
return "RNA" if( $effect =~ /^(mature_miRNA_variant|non_coding_exon_variant|non_coding_transcript_exon_variant|non_coding_transcript_variant|nc_transcript_variant)$/ );
return "5'UTR" if( $effect =~ /^(5_prime_UTR_variant|5_prime_UTR_premature_start_codon_gain_variant)$/ );
return "3'UTR" if( $effect eq '3_prime_UTR_variant' );
return "IGR" if( $effect =~ /^(TF_binding_site_variant|regulatory_region_variant|regulatory_region|intergenic_variant|intergenic_region)$/ );
return "5'Flank" if( $effect eq 'upstream_gene_variant' );
return "3'Flank" if ( $effect eq 'downstream_gene_variant' );
# Annotate everything else simply as a targeted region
# TFBS_ablation, TFBS_amplification,regulatory_region_ablation, regulatory_region_amplification,
# feature_elongation, feature_truncation
return "Targeted_Region";
}
__DATA__
=head1 NAME
vcf2maf.pl - Convert a VCF into a MAF by mapping each variant to only one of all possible gene isoforms
=head1 SYNOPSIS
perl vcf2maf.pl --help
perl vcf2maf.pl --input-vcf WD4086.vcf --output-maf WD4086.maf --tumor-id WD4086 --normal-id NB4086
=head1 OPTIONS
--input-vcf Path to input file in VCF format
--input-vep Path to VEP-annotated VCF file
--input-snpeff Path to snpEff-annotated VCF file (must use -sequenceOntology)
--output-maf Path to output MAF file [Default: STDOUT]
--tumor-id Tumor_Sample_Barcode to report in the MAF [TUMOR]
--normal-id Matched_Norm_Sample_Barcode to report in the MAF [NORMAL]
--vcf-tumor-id Tumor sample ID used in VCF's genotype columns [--tumor-id]
--vcf-normal-id Matched normal ID used in VCF's genotype columns [--normal-id]
--use-snpeff Use snpEff to annotate VCF, instead of the default VEP
--vep-path Folder containing variant_effect_predictor.pl [~/vep]
--vep-data VEP's base cache/plugin directory [~/.vep]
--vep-forks Number of forked processes to use when running VEP [4]
--ref-fasta Reference FASTA file [~/.vep/homo_sapiens/76_GRCh37/Homo_sapiens.GRCh37.75.dna.primary_assembly.fa]
--snpeff-path Folder containing snpEff.jar and snpEff.config [~/snpEff]
--snpeff-data Override for data_dir in snpEff.config [~/snpEff/data]
--snpeff-db Database version to use when running snpEff [GRCh37.75]
--ncbi-build NCBI reference assembly ID to report in MAF [GRCh37]
--maf-center Variant calling center to report in MAF [.]
--min-hom-vaf If GT undefined in VCF, minimum allele fraction to call a variant homozygous [0.7]
--help Print a brief help message and quit
--man Print the detailed manual
=head1 DESCRIPTION
To convert a VCF into a MAF, each variant must be mapped to only one of all possible gene transcripts/isoforms that it might affect. This selection of a single effect per variant, is often subjective. So this project is an attempt to make the selection criteria smarter, reproducible, and more configurable.
This script needs either VEP or snpEff - variant annotators that map effects of a variant on all possible genes and transcripts. For more info, see the README.
=head2 Relevant links:
Homepage: https://github.com/ckandoth/vcf2maf
VCF format: http://samtools.github.io/hts-specs/
MAF format: https://wiki.nci.nih.gov/x/eJaPAQ
VEP: http://ensembl.org/info/docs/tools/vep/index.html
VEP annotated VCF format: http://ensembl.org/info/docs/tools/vep/vep_formats.html#vcfout
snpEff: http://snpeff.sourceforge.net
snpEff annotated VCF format: http://snpeff.sourceforge.net/SnpEff_manual.html#output
=head1 AUTHORS
Cyriac Kandoth ([email protected])
=head1 LICENSE
LGPL v3 | GNU Lesser General Public License v3.0 | http://www.gnu.org/licenses/lgpl-3.0.html
=cut