forked from HenriquesLab/ZeroCostDL4Mic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmanifest.bioimage.io.yaml
477 lines (446 loc) · 39.5 KB
/
manifest.bioimage.io.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
format_version: 0.2.0
config:
id: zero
name: ZeroCostDL4Mic
version: 1.7.1
tags:
- ZeroCostDL4Mic
logo: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/ZeroCostLogo.png
icon: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/ZeroCostLogo.png
splash_title: ZeroCostDL4Mic
splash_subtitle: A Google Colab based no-cost toolbox to explore Deep-Learning in Microscopy
splash_feature_list: []
explore_button_text: Start Exploring
background_image: static/img/zoo-background.svg
resource_types:
- model
- notebook
- dataset
default_type: notebook
url_root: https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master
application:
- id: Notebook Preview
source: https://raw.githubusercontent.com/bioimage-io/nbpreview/master/notebook-preview.imjoy.html
dataset:
# see here for the format: https://bioimage.io/#/?show=contribute
# replace this with your actual dataset
- id: Dataset_StarDist_2D_ZeroCostDL4Mic_2D
name: StarDist (2D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (SiR-DNA) and masks obtained via manual segmentation
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Johanna Jukkala, Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3715492
tags: [StarDist, segmentation, ZeroCostDL4Mic, 2D]
source: https://doi.org/10.5281/zenodo.3715492
covers:
- https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/Stardist_nuclei_masks.png
- id: Dataset_Noise2Void_2D_ZeroCostDL4Mic
name: Noise2Void (2D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (paxillin-GFP)
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Aki Stubb, Guillaume Jacquemet, Johanna Ivaska]
documentation: >-
https://doi.org/10.5281/zenodo.3713315
tags: [Noise2Void, denoising, ZeroCostDL4Mic, 2D]
source: https://doi.org/10.5281/zenodo.3713315
covers:
- https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/N2V_wiki.png
- id: Dataset_Noise2Void_3D_ZeroCostDL4Mic
name: Noise2Void (3D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (Lifeact-RFP)
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Guillaume Jacqueme]
documentation: >-
https://doi.org/10.5281/zenodo.3713326
tags: [Noise2Void, denoising, ZeroCostDL4Mic, 3D]
source: https://doi.org/10.5281/zenodo.3713326
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/TrainingDataset_ShowOff_v3.png
- id: Dataset_CARE_2D_ZeroCostDL4Mic
name: CARE (2D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (Lifeact-RFP)
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Guillaume Jacqueme]
documentation: >-
https://doi.org/10.5281/zenodo.3713330
tags: [CARE, denoising, ZeroCostDL4Mic, 2D]
source: https://doi.org/10.5281/zenodo.3713330
covers:
- https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/CARE_wiki.png
- id: Dataset_CARE_3D_ZeroCostDL4Mic
name: CARE (3D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (Lifeact-RFP)
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Guillaume Jacqueme]
documentation: >-
https://doi.org/10.5281/zenodo.3713337
tags: [CARE, denoising, ZeroCostDL4Mic, 3D]
source: https://doi.org/10.5281/zenodo.3713337
covers:
- https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/CARE_wiki.png
- id: Dataset_fnet_3D_ZeroCostDL4Mic
name: Label-free prediction (fnet) example training and test dataset - ZeroCostDL4Mic
description: Confocal microscopy data (TOM20 labeled with Alexa Fluor 594)
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Christoph Spahn]
documentation: >-
https://doi.org/10.5281/zenodo.3748967
tags: [fnet, labelling, ZeroCostDL4Mic, 3D]
source: https://doi.org/10.5281/zenodo.3748967
covers:
- https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/Fnet_exemplary_data_mitochondria.png
- id: Dataset_Deep-STORM_ZeroCostDL4Mic
name: Deep-STORM training and example dataset - ZeroCostDL4Mic
description: Time-series of simulated, randomly distributed single-molecule localization (SMLM) data (Training dataset). Experimental time-series dSTORM acquisition of Glial cells stained with phalloidin for actin (Example dataset).
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Christophe Leterrier, Romain F. Laine]
documentation: >-
https://doi.org/10.5281/zenodo.3959089
tags: [SMLM, Deep-STORM, ZeroCostDL4Mic, 2D]
source: https://doi.org/10.5281/zenodo.3959089
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/TrainingDataset_ShowOff_v3.png
- id: Dataset_CycleGAN_ZeroCostDL4Mic
name: CycleGAN example training and test dataset - ZeroCostDL4Mic
description: Unpaired microscopy images (fluorescence) of microtubules (Spinning-disk and SRRF reconstructed images)
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3941884
tags: [CycleGAN, ZeroCostDL4Mic]
source: https://doi.org/10.5281/zenodo.3941884
covers:
- https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/unpaired-image_translation.png
- id: Dataset_pix2pix_ZeroCostDL4Mic
name: pix2pix example training and test dataset - ZeroCostDL4Mic
description: Paired microscopy images (fluorescence) of lifeact-RFP and sir-DNA
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3941889
tags: [pix2pix, ZeroCostDL4Mic]
source: https://doi.org/10.5281/zenodo.3941889
covers:
- https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/paired-image_translation.png
- id: Dataset_YOLOv2_ZeroCostDL4Mic
name: YoloV2 example training and test dataset - ZeroCostDL4Mic
description: 2D grayscale .png images with corresponding bounding box annotations in .xml PASCAL Voc format.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors: [Guillaume Jacquemet, Lucas von Chamier]
documentation: >-
https://doi.org/10.5281/zenodo.3941908
tags: [YOLOv2, ZeroCostDL4Mic]
source: https://doi.org/10.5281/zenodo.3941908
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/TrainingDataset_ShowOff_v3.png
notebook:
- id: Notebook_U-Net_2D_ZeroCostDL4Mic
name: U-Net (2D) - ZeroCostDL4Mic
description: U-Net is an encoder-decoder architecture originally used for image segmentation. The first half of the U-Net architecture is a downsampling convolutional neural network which acts as a feature extractor from input images. The other half upsamples these results and restores an image by combining results from downsampling with the upsampled images. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Romain Laine and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/U-Net_2D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [U-Net, segmentation, ZeroCostDL4Mic, 2D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/U-Net_2D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- id: Notebook_U-Net_3D_ZeroCostDL4Mic
name: U-Net (3D) - ZeroCostDL4Mic
description: The 3D U-Net was first introduced by Çiçek et al for learning dense volumetric segmentations from sparsely annotated ground-truth data building upon the original U-Net architecture by Ronneberger et al. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Daniel Krentzel and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/U-Net_3D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [U-Net, segmentation, ZeroCostDL4Mic, 3D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/U-Net_3D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- id: Notebook_StarDist_2D_ZeroCostDL4Mic
name: StarDist (2D) - ZeroCostDL4Mic
description: StarDist is a deep-learning method that can be used to segment cell nuclei in 2D (xy) single images or in stacks (xyz). Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/StarDist_2D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [StarDist, segmentation, ZeroCostDL4Mic, 2D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/StarDist_2D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_StarDist_2D_ZeroCostDL4Mic_2D
- id: Notebook_StarDist_3D_ZeroCostDL4Mic
name: StarDist (3D) - ZeroCostDL4Mic
description: StarDist is a deep-learning method that can be used to segment cell nuclei in 3D (xyz) images. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/StarDist_3D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [StarDist, segmentation, ZeroCostDL4Mic, 3D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/StarDist_3D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- id: Notebook_Noise2Void_2D_ZeroCostDL4Mic
name: Noise2Void (2D) - ZeroCostDL4Mic
description: Noise2Void 2D is deep-learning method that can be used to denoise 2D microscopy images. By running this notebook, you can train your own network and denoise your images. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Romain Laine and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Noise2Void_2D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [Noise2VOID, denoising, ZeroCostDL4Mic, 2D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Noise2Void_2D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_Noise2Void_2D_ZeroCostDL4Mic
- id: Notebook_Noise2Void_3D_ZeroCostDL4Mic
name: Noise2VOID (3D) - ZeroCostDL4Mic
description: Noise2VOID 3D is deep-learning method that can be used to denoise 3D microscopy images. By running this notebook, you can train your own network and denoise your images. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Romain Laine and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Noise2Void_3D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [Noise2Void, denoising, ZeroCostDL4Mic, 3D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Noise2Void_3D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_Noise2Void_3D_ZeroCostDL4Mic
- id: Notebook_CARE_2D_ZeroCostDL4Mic
name: CARE (2D) - ZeroCostDL4Mic
description: CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by Weigert et al. in Nature Methods. The network allows image denoising and resolution improvement in 2D and 3D images, in a supervised training manner. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Lucas von Chamier and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/CARE_2D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [CARE, denoising, ZeroCostDL4Mic, 2D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CARE_2D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_CARE_2D_ZeroCostDL4Mic
- id: Notebook_CARE_3D_ZeroCostDL4Mic
name: CARE (3D) - ZeroCostDL4Mic
description: CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by Weigert et al. in Nature Methods. The network allows image denoising and resolution improvement in 2D and 3D images, in a supervised training manner. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Lucas von Chamier and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/CARE_3D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [CARE, denoising, ZeroCostDL4Mic, 3D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CARE_3D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_CARE_3D_ZeroCostDL4Mic
- id: Notebook_fnet_ZeroCostDL4Mic
name: Label-free Prediction - fnet - (3D) ZeroCostDL4Mic
description: Label-free Prediction (fnet) is a neural network used to infer the features of cellular structures from brightfield or EM images without coloured labels. The network is trained using paired training images from the same field of view, imaged in a label-free (e.g. brightfield) and labelled condition (e.g. fluorescent protein). When trained, this allows the user to identify certain structures from brightfield images alone. The performance of fnet may depend significantly on the structure at hand. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Lucas von Chamier and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/fnet_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [fnet, labelling, ZeroCostDL4Mic, 3D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/fnet_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_fnet_3D_ZeroCostDL4Mic
- id: Notebook_Deep-STORM_2D_ZeroCostDL4Mic
name: Deep-STORM (2D) - ZeroCostDL4Mic
description: Deep-STORM is a neural network capable of image reconstruction from high-density single-molecule localization microscopy (SMLM), first published in 2018 by Nehme et al. in Optica. This network allows image reconstruction of 2D super-resolution images, in a supervised training manner. The network is trained using simulated high-density SMLM data for which the ground-truth is available. These simulations are obtained from random distribution of single molecules in a field-of-view and therefore do not imprint structural priors during training. The network output a super-resolution image with increased pixel density (typically upsampling factor of 8 in each dimension). Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Romain Laine and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Deep-STORM_2D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [Deep-STORM, labelling, ZeroCostDL4Mic, 2D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Deep-STORM_2D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_Deep-STORM_ZeroCostDL4Mic
- id: Notebook_pix2pix_2D_ZeroCostDL4Mic
name: pix2pix (2D) - ZeroCostDL4Mic
description: pix2pix is a deep-learning method that can be used to translate one type of images into another. While pix2pix can potentially be used for any type of image-to-image translation, we demonstrate that it can be used to predict a fluorescent image from another fluorescent image. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/pix2pix_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [pix2pix, ZeroCostDL4Mic, 2D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/pix2pix_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_pix2pix_ZeroCostDL4Mic
- id: Notebook_CycleGAN_2D_ZeroCostDL4Mic
name: CycleGAN (2D) - ZeroCostDL4Mic
description: CycleGAN is a method that can capture the characteristics of one image domain and figure out how these characteristics could be translated into another image domain, all in the absence of any paired training examples (ie transform a horse into zebra or apples into oranges). While CycleGAN can potentially be used for any type of image-to-image translation, we illustrate that it can be used to predict what a fluorescent label would look like when imaged using another imaging modalities. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/CycleGAN_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [CycleGAN, ZeroCostDL4Mic, 2D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CycleGAN_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- Dataset_CycleGAN_ZeroCostDL4Mic
- id: Notebook_Augmentor_ZeroCostDL4Mic
name: Augmentor - ZeroCostDL4Mic
description: Augmentor is a data augmentation library. Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation can be especially valuable when training dataset need to be manually labelled. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Tools/Augmentor_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [Augmentor, Data Augmentation, ZeroCostDL4Mic]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Tools/Augmentor_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview
- id: Notebook_DenoiSeg_2D_ZeroCostDL4Mic
name: DenoiSeg (2D) - ZeroCostDL4Mic
description: DenoiSeg 2D is deep-learning method that can be used to jointly denoise and segment 2D microscopy images. The benefits of using DenoiSeg (compared to other Deep Learning-based segmentation methods) are more prononced when only a few annotated images are available. However, the denoising part requires many images to perform well. All the noisy images don't need to be labeled to train DenoiSeg. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
text: "Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-pérez, Pieta Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver Buchholz, Martin L Jones, Loic Alain Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug, Mike Heilemann, Guillaume Jacquemet, Ricardo Henriques. ZeroCostDL4Mic: an open platform to use Deep-Learning in Microscopy. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.03.20.000133"
doi: https://doi.org/10.1101/2020.03.20.000133
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master/Wiki_files/ZeroCostDL4Mic_SuppVideo2_Analysis_of_example_data.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Beta%20notebooks/DenoiSeg_2D_ZeroCostDL4Mic.ipynb
documentation: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
tags: [CycleGAN, ZeroCostDL4Mic, 2D]
source: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Beta%20notebooks/DenoiSeg_2D_ZeroCostDL4Mic.ipynb
git_repo: https://github.com/HenriquesLab/ZeroCostDL4Mic
links:
- Notebook Preview