-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
217 lines (160 loc) · 7.34 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import streamlit as st
from dotenv import load_dotenv
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, PromptTemplate, SystemMessagePromptTemplate
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
import openai
import os
from utils import get_pdf_text, get_text_chunks, get_vectorstore,load_vectorstore
openai.api_key = os.getenv('OPENAI_API_KEY')
MAX_CHATGPT35_TOKENS=4095
def get_conversation_chain(vectorstore, student='the student'):
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo")
general_system_template = f"""
You are speaking to {student}, and guiding them through through their inquiries.
If the student's major is provided, greet them by their name and cater your responses to their major.
For example, provide a metaphor that relates the response to the student's major'
----
{{context}}
----
"""
general_user_template = f"Hi I am {student}. Here is my inquiry: ```{{question}}```"
#print(general_system_template)
#print(general_user_template)
messages = [
SystemMessagePromptTemplate.from_template(general_system_template),
HumanMessagePromptTemplate.from_template(general_user_template)
]
qa_prompt = ChatPromptTemplate.from_messages(messages)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory,
combine_docs_chain_kwargs={'prompt': qa_prompt},
max_tokens_limit=MAX_CHATGPT35_TOKENS
)
return conversation_chain
def simplify_text(text):
print(text)
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
#messages='Simplify the following text: '+ f" '''{text}'''",
messages=[
{"role": "system", "content": "You are Simplify. You rewrite complex texts with 2 rules 1) you simplify the text so that a 12 year old would understand and 2) you refrain from using complex terms."},
{"role": "user", "content": text},
],
max_tokens=3000,
temperature=0.2,
)
print(response)
return response.choices[-1].message.content
def handle_userinput(prompt):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = "loading..."
message_placeholder.markdown(full_response)
response = st.session_state.conversation({'question': prompt})
st.session_state.chat_history = response['chat_history']
full_response = st.session_state.chat_history[-1].content
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
def main():
load_dotenv()
st.set_page_config(page_title="Study Buddy",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
with st.sidebar:
st.header("Your classes:")
#classes are currently determined by what is in the "vectors" folder
classes = [name for name in os.listdir("vectors")]
if '.DS_Store' in classes: #mac bug, probably can be removed for huggingface
classes.remove('.DS_Store')
classes.sort()
st.session_state.classes=classes
if 'radioIndex' not in st.session_state:
st.session_state.radioIndex = 0
className = st.radio(
"Choose your class",
st.session_state.classes,
index=st.session_state.radioIndex
)
#load vectors for the class selected
vectorstore = load_vectorstore(className)
st.session_state.conversation = get_conversation_chain(vectorstore)
if 'addNewClass' not in st.session_state:
st.session_state.addNewClass = False
def addNewClass(i):
st.session_state.addNewClass = i
st.button('Add new class', on_click=addNewClass, args=[True])
if st.session_state.addNewClass:
newClassName = st.text_input("Enter the name of your class:")
pdf_docs = st.file_uploader(
"Upload class documents here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks, str(len(st.session_state.classes)+1) + "_" + newClassName)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
#update UI
st.session_state.classes.append(newClassName)
st.session_state.radioIndex = len(st.session_state.classes)-1
addNewClass(False)
st.experimental_rerun()
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
st.caption("StudyBuddy transforms your existing course content into your preferred learning styles!")
# if not processed first, this will break.
def change_student():
option = st.session_state['student']
student_data = 'the student'
if(option == 'Choose Student'):
return
elif(option == 'Billy'):
student_data = "Billy, the Biology major. "
elif(option == 'Christina'):
student_data = "Christina, the Chemistry major. "
st.session_state.conversation = get_conversation_chain(vectorstore, student_data)
st.session_state.messages = []
# Choose Student Profile
option = st.selectbox(
'',
('Choose Student', 'Billy', 'Christina'),
on_change=change_student,
key='student')
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("Talk to Study Buddy"):
handle_userinput(prompt)
def simplify_last_message():
last_message = st.session_state.chat_history[-1].content
simplified_text = simplify_text(last_message)
st.session_state.chat_history[-1].content = simplified_text
st.session_state.messages.append({"role": "assistant", "content": simplified_text})
st.button('Simplify', on_click=simplify_last_message)
if __name__ == '__main__':
main()