forked from AndresPMD/Pytorch-yolo-phoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage.py
265 lines (223 loc) · 9.05 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/python
# encoding: utf-8
import random
import os
from PIL import Image
import numpy as np
import logging
import re
def scale_image_channel(im, c, v):
cs = list(im.split())
cs[c] = cs[c].point(lambda i: i * v)
out = Image.merge(im.mode, tuple(cs))
return out
def distort_image(im, hue, sat, val):
im = im.convert('HSV')
cs = list(im.split())
cs[1] = cs[1].point(lambda i: i * sat)
cs[2] = cs[2].point(lambda i: i * val)
def change_hue(x):
x += hue*255
if x > 255:
x -= 255
if x < 0:
x += 255
return x
cs[0] = cs[0].point(change_hue)
im = Image.merge(im.mode, tuple(cs))
im = im.convert('RGB')
#constrain_image(im)
return im
def rand_scale(s):
scale = random.uniform(1, s)
if(random.randint(1,10000)%2):
return scale
return 1./scale
def random_distort_image(im, hue, saturation, exposure):
dhue = random.uniform(-hue, hue)
dsat = rand_scale(saturation)
dexp = rand_scale(exposure)
res = distort_image(im, dhue, dsat, dexp)
return res
def data_augmentation(img, shape, jitter, hue, saturation, exposure):
oh = img.height
ow = img.width
dw =int(ow*jitter)
dh =int(oh*jitter)
pleft = random.randint(-dw, dw)
pright = random.randint(-dw, dw)
ptop = random.randint(-dh, dh)
pbot = random.randint(-dh, dh)
swidth = ow - pleft - pright
sheight = oh - ptop - pbot
sx = float(swidth) / ow
sy = float(sheight) / oh
cropped = img.crop( (pleft, ptop, pleft + swidth - 1, ptop + sheight - 1))
dx = (float(pleft)/ow)/sx
dy = (float(ptop) /oh)/sy
sized = cropped.resize(shape)
# WE DONT WANT TO FLIP TEXT
# flip = random.randint(1,10000)%2
# if flip:
# sized = sized.transpose(Image.FLIP_LEFT_RIGHT)
flip = 0
img = random_distort_image(sized, hue, saturation, exposure)
return img, flip, dx,dy,sx,sy
def fill_truth_detection(labpath, w, h, flip, dx, dy, sx, sy):
max_boxes = 100
label = np.zeros((max_boxes,5))
word_list = list()
if os.path.getsize(labpath):
text_file = open(labpath, 'r')
lines = text_file.read().split('\n')
ordered_lines = list ()
for i in range (0, len(lines)):
if lines[i] == '':
break
temporal_list = lines[i].split(" ")
word_list.append(temporal_list[0])
temporal_list [0] = 0
ordered_lines.append(temporal_list)
bs = np.asarray(ordered_lines, dtype=np.float32)
if bs is None:
return label, word_list
bs = np.reshape(bs, (-1, 5))
cc = 0
for i in range(bs.shape[0]): # ITERATE THROUGH EVERY GROUND TRUTH OBJECT
x1 = bs[i][1] - bs[i][3]/2
y1 = bs[i][2] - bs[i][4]/2
x2 = bs[i][1] + bs[i][3]/2
y2 = bs[i][2] + bs[i][4]/2
x1 = min(0.999, max(0, x1 * sx - dx))
y1 = min(0.999, max(0, y1 * sy - dy))
x2 = min(0.999, max(0, x2 * sx - dx))
y2 = min(0.999, max(0, y2 * sy - dy))
bs[i][1] = (x1 + x2)/2
bs[i][2] = (y1 + y2)/2
bs[i][3] = (x2 - x1)
bs[i][4] = (y2 - y1)
if flip:
bs[i][1] = 0.999 - bs[i][1]
# IF OBJECT IS TOO SMALL/NOISE DISCARD
if bs[i][3] < 0.001 or bs[i][4] < 0.001:
continue
label[cc] = bs[i]
cc += 1
if cc >= max_boxes:
break
label = np.reshape(label, (-1))
return label, word_list
def load_data_detection(imgpath, shape, jitter, hue, saturation, exposure):
labpath = imgpath.replace('images', 'labels').replace('JPEGImages', 'labels').replace('.jpg', '.txt').replace('.png','.txt')
## data augmentation
img = Image.open(imgpath).convert('RGB')
img,flip,dx,dy,sx,sy = data_augmentation(img, shape, jitter, hue, saturation, exposure)
label, word_list = fill_truth_detection(labpath, img.width, img.height, flip, dx, dy, 1./sx, 1./sy)
# print (word_list)
phoc_label = fill_phoc(word_list)
return img,label, phoc_label
def fill_phoc(word_list):
max_boxes = 100
phoc_matrix = np.zeros((max_boxes, 604))
if len(word_list) == 0:
return phoc_matrix
for i in range(0, len(word_list)):
phoc_matrix[i,:] = phoc(word_list[i])
return phoc_matrix
def build_phoc(words, phoc_unigrams, unigram_levels,
bigram_levels=None, phoc_bigrams=None,
split_character=None, on_unknown_unigram='error'):
'''
Calculate Pyramidal Histogram of Characters (PHOC) descriptor (see Almazan 2014).
Args:
word (str): word to calculate descriptor for
phoc_unigrams (str): string of all unigrams to use in the PHOC
unigram_levels (list of int): the levels for the unigrams in PHOC
phoc_bigrams (list of str): list of bigrams to be used in the PHOC
phoc_bigram_levls (list of int): the levels of the bigrams in the PHOC
split_character (str): special character to split the word strings into characters
on_unknown_unigram (str): What to do if a unigram appearing in a word
is not among the supplied phoc_unigrams. Possible: 'warn', 'error'
Returns:
the PHOC for the given word
'''
# prepare output matrix
logger = logging.getLogger('PHOCGenerator')
if on_unknown_unigram not in ['error', 'warn']:
raise ValueError('I don\'t know the on_unknown_unigram parameter \'%s\'' % on_unknown_unigram)
phoc_size = len(phoc_unigrams) * np.sum(unigram_levels)
if phoc_bigrams is not None:
phoc_size += len(phoc_bigrams) * np.sum(bigram_levels)
phocs = np.zeros((len(words), phoc_size))
# prepare some lambda functions
occupancy = lambda k, n: [float(k) / n, float(k + 1) / n]
overlap = lambda a, b: [max(a[0], b[0]), min(a[1], b[1])]
size = lambda region: region[1] - region[0]
# map from character to alphabet position
char_indices = {d: i for i, d in enumerate(phoc_unigrams)}
# iterate through all the words
for word_index, word in enumerate(words):
if split_character is not None:
word = word.split(split_character)
n = len(word)
for index, char in enumerate(word):
char_occ = occupancy(index, n)
if char not in char_indices:
if on_unknown_unigram == 'warn':
logger.warn('The unigram \'%s\' is unknown, skipping this character', char)
continue
else:
logger.fatal('The unigram \'%s\' is unknown', char)
print (char)
#raise ValueError()
char_index = char_indices[char]
for level in unigram_levels:
for region in range(level):
region_occ = occupancy(region, level)
if size(overlap(char_occ, region_occ)) / size(char_occ) >= 0.5:
feat_vec_index = sum([l for l in unigram_levels if l < level]) * len(
phoc_unigrams) + region * len(phoc_unigrams) + char_index
phocs[word_index, feat_vec_index] = 1
# add bigrams
if phoc_bigrams is not None:
ngram_features = np.zeros(len(phoc_bigrams) * np.sum(bigram_levels))
ngram_occupancy = lambda k, n: [float(k) / n, float(k + 2) / n]
for i in range(n - 1):
ngram = word[i:i + 2]
phoc_dict = {k: v for v, k in enumerate(phoc_bigrams)}
if phoc_dict.get(ngram, 666) == 666:
continue
occ = ngram_occupancy(i, n)
for level in bigram_levels:
for region in range(level):
region_occ = occupancy(region, level)
overlap_size = size(overlap(occ, region_occ)) / size(occ)
if overlap_size >= 0.5:
ngram_features[region * len(phoc_bigrams) + phoc_dict[ngram]] = 1
phocs[word_index, -ngram_features.shape[0]:] = ngram_features
return phocs
def phoc(raw_word):
'''
:param raw_word: string of word to be converted
:return: phoc representation as a np.array (1,604)
'''
word =[raw_word]
word_lowercase = word[0].lower()
word = [word_lowercase]
phoc_unigrams = 'abcdefghijklmnopqrstuvwxyz0123456789'
unigram_levels = [2,3,4,5]
bigram_levels=[]
bigram_levels.append(2)
phoc_bigrams = []
i = 0
with open('/SSD/pytorch-yolo2-master/PHOC/bigrams_new.txt','r') as f:
for line in f:
a = line.split()
phoc_bigrams.append(a[0].lower())
#phoc_bigrams.append(list(a[0])[0])
#phoc_bigrams.append(list(a[0])[1])
i = i +1
if i >= 50:break
qry_phocs = build_phoc(words = word, phoc_unigrams = phoc_unigrams, unigram_levels = unigram_levels,
bigram_levels = bigram_levels, phoc_bigrams = phoc_bigrams)
return qry_phocs