-
Notifications
You must be signed in to change notification settings - Fork 1
/
engine_cl.py
executable file
·487 lines (434 loc) · 17 KB
/
engine_cl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import torch
from util.utils import train_accuracy
import util.utils as util
from util.data_prefetcher import data_prefetcher
import wandb
from util.utils import get_time
import os
from IPython import embed
def train_one_epoch(
model: torch.nn.Module,
dataloader_forget: torch.utils.data.DataLoader,
dataloader_remain: torch.utils.data.DataLoader,
device: torch.device,
criterion: torch.nn.Module,
optimizer: torch.optim.Optimizer,
epoch: int,
losses_forget: util.AverageMeter,
losses_remain: util.AverageMeter,
losses_total: util.AverageMeter,
losses_structure: util.AverageMeter,
top1_forget: util.AverageMeter,
top1_remain: util.AverageMeter,
beta: float,
alpha: float,
BND: float,
batch: int,
testloader_forget: torch.utils.data.DataLoader,
testloader_remain: torch.utils.data.DataLoader,
forget_acc_before: float,
highest_H_mean: float,
cfg: dict,
task_i: str,
):
"""
Train the model for one epoch and evaluate on test set and save checkpoints
:return: batch(int), highest_H_mean(int)
"""
model.train()
criterion.train()
# print('Create data prefetcher...')
prefetcher_forget = data_prefetcher(dataloader_forget, device, prefetch=True)
inputs_forget, labels_forget = (
prefetcher_forget.next()
) # data has already been put on GPU device
DISP_FREQ = 5
VER_FREQ = 5
# import pdb; pdb.set_trace()
for inputs_remain, labels_remain in iter(dataloader_remain):
inputs_remain = inputs_remain.to(device)
labels_remain = labels_remain.to(device)
outputs_remain, embeds_remain = model(inputs_remain.float(), labels_remain)
# compute remain loss
loss_remain = criterion(outputs_remain, labels_remain)
prec1_remain = train_accuracy(outputs_remain.data, labels_remain, topk=(1,))
# import pdb; pdb.set_trace()
losses_remain.update(loss_remain.data.item(), inputs_remain.size(0))
top1_remain.update(prec1_remain.data.item(), inputs_remain.size(0))
outputs_forget, embeds_forget = model(inputs_forget.float(), labels_forget)
# compute forget loss
loss_forget = criterion(outputs_forget, labels_forget)
prec1_forget = train_accuracy(outputs_forget.data, labels_forget, topk=(1,))
# loss_forget = -loss_forget # maximize the loss
# embed() # debug
loss_forget = torch.functional.F.relu(BND - loss_forget) # bounded loss
losses_forget.update(beta * loss_forget.data.item(), inputs_forget.size(0))
top1_forget.update(prec1_forget.data.item(), inputs_forget.size(0))
# compute structure loss
structure_loss = get_structure_loss(model)
losses_structure.update(
alpha * structure_loss.data.item(), inputs_remain.size(0)
)
# compute regularization loss
# compute total loss
loss_total = loss_forget * beta + loss_remain + structure_loss * alpha
losses_total.update(loss_total.data.item(), inputs_remain.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
# display training loss & accuracy every DISP_FREQ iterations
if ((batch + 1) % DISP_FREQ == 0) and batch != 0:
epoch_loss_forget = losses_forget.avg
epoch_loss_remain = losses_remain.avg
epoch_loss_total = losses_total.avg
epoch_acc_forget = top1_forget.avg
epoch_acc_remain = top1_remain.avg
epoch_loss_structure = losses_structure.avg
wandb.log(
{
"epoch_loss_forget-{}".format(task_i): epoch_loss_forget,
"epoch_loss_remain-{}".format(task_i): epoch_loss_remain,
"epoch_acc_forget-{}".format(task_i): epoch_acc_forget,
"epoch_acc_remain-{}".format(task_i): epoch_acc_remain,
"epoch_loss_total-{}".format(task_i): epoch_loss_total,
"epoch_loss_structure-{}".format(task_i): epoch_loss_structure,
}
)
print(
"Task {} Epoch {} Batch {}\t"
"Training forget Loss {loss_forget.val:.4f} ({loss_forget.avg:.4f})\t"
"Training remain Loss {loss_remain.val:.4f} ({loss_remain.avg:.4f})\t"
"Training structure Loss {loss_structure.val:.4f} ({loss_structure.avg:.4f})\t"
"Training total Loss {loss_total.val:.4f} ({loss_total.avg:.4f})\t"
"Training forget Prec@1 {top1_forget.val:.3f} ({top1_forget.avg:.3f})\t"
"Training remain Prec@1 {top1_remain.val:.3f} ({top1_remain.avg:.3f})".format(
task_i,
epoch + 1,
batch + 1,
loss_forget=losses_forget,
loss_remain=losses_remain,
top1_forget=top1_forget,
top1_remain=top1_remain,
loss_structure=losses_structure,
loss_total=losses_total,
)
)
# reset average meters
losses_forget = util.AverageMeter()
losses_remain = util.AverageMeter()
top1_forget = util.AverageMeter()
top1_remain = util.AverageMeter()
losses_total = util.AverageMeter()
losses_structure = util.AverageMeter()
if ((batch + 1) % VER_FREQ == 0) and batch != 0:
highest_H_mean = evaluate(
model,
testloader_forget=testloader_forget,
testloader_remain=testloader_remain,
device=device,
batch=batch,
epoch=epoch,
task_i=task_i,
forget_acc_before=forget_acc_before,
highest_H_mean=highest_H_mean,
cfg=cfg,
optimizer=optimizer,
)
model.train()
batch += 1
# prefetch next batch
inputs_forget, labels_forget = prefetcher_forget.next()
if inputs_forget is None:
prefetcher_forget = data_prefetcher(
dataloader_forget, device, prefetch=True
)
inputs_forget, labels_forget = prefetcher_forget.next()
return (
batch,
highest_H_mean,
losses_forget,
losses_remain,
top1_forget,
top1_remain,
losses_total,
losses_structure,
)
def evaluate(
model: torch.nn.Module,
testloader_forget: torch.utils.data.DataLoader,
testloader_remain: torch.utils.data.DataLoader,
device: torch.device,
batch: int,
epoch: int,
forget_acc_before: float,
highest_H_mean: float,
cfg: dict,
optimizer: torch.optim.Optimizer,
task_i: str,
testloader_open: torch.utils.data.DataLoader = None,
):
model.eval()
for params in optimizer.param_groups:
lr = params["lr"]
break
print("current learning rate:{:.7f}".format(lr))
print("Perfom evaluation on test set and save checkpoints...")
forget_acc = eval_data(
model, testloader_forget, device, "forget-{}".format(task_i), batch
)
remain_acc = eval_data(
model, testloader_remain, device, "remain-{}".format(task_i), batch
)
if testloader_open is not None:
open_acc = eval_data(
model, testloader_open, device, "open-{}".format(task_i), batch
)
forget_drop = forget_acc_before - forget_acc
Hmean = 2 * forget_drop * remain_acc / (forget_drop + remain_acc + 1e-8)
# save checkpoints per epoch
if Hmean > highest_H_mean:
highest_H_mean = Hmean
if cfg["MULTI_GPU"]:
torch.save(
model.module.state_dict(),
os.path.join(
cfg["WORK_PATH"],
"Backbone_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(
cfg["BACKBONE_NAME"], epoch + 1, batch + 1, get_time()
),
),
)
else:
torch.save(
model.state_dict(),
os.path.join(
cfg["WORK_PATH"],
"Backbone_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(
cfg["BACKBONE_NAME"], epoch + 1, batch + 1, get_time()
),
),
)
# set the number of checkpoints to be saved:2 (one additional config.txt)
if len(os.listdir(cfg["WORK_PATH"])) >= 4:
checkpoints = list(
filter(lambda f: f.endswith(".pth"), os.listdir(cfg["WORK_PATH"]))
)
checkpoints.sort(
key=lambda f: os.path.getmtime(os.path.join(cfg["WORK_PATH"], f))
)
os.remove(os.path.join(cfg["WORK_PATH"], checkpoints[0]))
return highest_H_mean
def eval_data(
model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
device: torch.device,
mode: str,
batch: int = 0,
):
"""
Evaluate the model on test set, return the accuracy (0-100)
"""
correct = 0
total = 0
model.eval()
with torch.no_grad():
for images, labels in dataloader:
images = images.to(device)
labels = labels.to(device).long()
outputs, _ = model(images, labels)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# print the accuracy
accuracy = 100 * correct / total
print("Test {} Accuracy:{:2f}%".format(mode, accuracy))
wandb.log({"Test {} Accuracy".format(mode): accuracy})
return accuracy
def get_structure_loss(model: torch.nn.Module):
if isinstance(model, torch.nn.DataParallel):
model_without_ddp = model.module
else:
model_without_ddp = model
learnable_params_name = [
name
for name, param in model_without_ddp.named_parameters()
if param.requires_grad
]
group_layers = []
"""
transformer.layers.0.1.fn.fn.net.0.lora_A
transformer.layers.0.1.fn.fn.net.0.lora_B
transformer.layers.0.1.fn.fn.net.3.lora_A
transformer.layers.0.1.fn.fn.net.3.lora_B
transformer.layers.1.1.fn.fn.net.0.lora_A
transformer.layers.1.1.fn.fn.net.0.lora_B
transformer.layers.1.1.fn.fn.net.3.lora_A
transformer.layers.1.1.fn.fn.net.3.lora_B
transformer.layers.2.1.fn.fn.net.0.lora_A
transformer.layers.2.1.fn.fn.net.0.lora_B
transformer.layers.2.1.fn.fn.net.3.lora_A
transformer.layers.2.1.fn.fn.net.3.lora_B
transformer.layers.3.1.fn.fn.net.0.lora_A
transformer.layers.3.1.fn.fn.net.0.lora_B
transformer.layers.3.1.fn.fn.net.3.lora_A
transformer.layers.3.1.fn.fn.net.3.lora_B
transformer.layers.4.1.fn.fn.net.0.lora_A
transformer.layers.4.1.fn.fn.net.0.lora_B
transformer.layers.4.1.fn.fn.net.3.lora_A
transformer.layers.4.1.fn.fn.net.3.lora_B
transformer.layers.5.1.fn.fn.net.0.lora_A
transformer.layers.5.1.fn.fn.net.0.lora_B
transformer.layers.5.1.fn.fn.net.3.lora_A
transformer.layers.5.1.fn.fn.net.3.lora_B
"""
for i in range(6):
group_item = []
group_item.append("transformer.layers.{}.1.fn.fn.net.0.lora_A".format(i))
group_item.append("transformer.layers.{}.1.fn.fn.net.0.lora_B".format(i))
group_item.append("transformer.layers.{}.1.fn.fn.net.3.lora_A".format(i))
group_item.append("transformer.layers.{}.1.fn.fn.net.3.lora_B".format(i))
group_layers.append(group_item)
# get the parameters
group_params = []
for group_item in group_layers:
group_param = []
for item in group_item:
group_param.append(
model_without_ddp.get_parameter(item)
if item in learnable_params_name
else None
)
group_params.append(group_param)
def group_sparse_multi_module(group_param):
# group_param is a list of parameters
# calculate the loss for a single group of parameters
def l2_loss(param_group):
return torch.sum(param_group**2)
lasso_sum = 0
for param in group_param:
lasso_sum += l2_loss(param)
return torch.sqrt(lasso_sum)
group_sparse_loss = 0
# calculate the loss for all groups of parameters
for group_param in group_params:
group_sparse_loss += group_sparse_multi_module(group_param)
# print('group_sparse_loss', group_sparse_loss)
return group_sparse_loss
def get_reg_loss(
model: torch.nn.Module,
regularization_terms: dict,
reg_lambda: float,
device: torch.device,
):
l2_loss = torch.tensor(0.0, device=device)
if regularization_terms is None:
return l2_loss
if isinstance(model, torch.nn.DataParallel):
model_without_ddp = model.module
else:
model_without_ddp = model
reg_loss = torch.tensor(0.0, device=device)
for i, reg_term in regularization_terms.items():
task_reg_loss = torch.tensor(0.0, device=device)
importance = reg_term["importance"]
task_param = reg_term["task_param"]
for n, p in model_without_ddp.named_parameters():
if p.requires_grad:
task_reg_loss += (importance[n] * (p - task_param[n]) ** 2).sum()
reg_loss += task_reg_loss
l2_loss += reg_lambda * reg_loss
return l2_loss
def train_one_epoch_regularzation(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader_cl_forget: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
batch: int,
reg_lambda: float,
regularization_terms: dict,
losses_CE: util.AverageMeter,
losses_regularization: util.AverageMeter,
losses_total: util.AverageMeter,
task_i: str,
testloader_forget: torch.utils.data.DataLoader,
testloader_remain: torch.utils.data.DataLoader,
forget_acc_before: float,
highest_H_mean: float,
cfg: dict,
testloader_open: torch.utils.data.DataLoader = None,
):
model.train()
criterion.train()
DISP_FREQ = 5
VER_FREQ = 5
for inputs_forget, labels_forget in iter(data_loader_cl_forget):
inputs_forget = inputs_forget.to(device)
labels_forget = labels_forget.to(device)
outputs_forget, embeds_forget = model(inputs_forget.float(), labels_forget)
# compute CE loss
loss_forget = criterion(outputs_forget, labels_forget)
losses_CE.update(loss_forget.data.item(), inputs_forget.size(0))
# compute regularization loss
regularization_loss = get_reg_loss(
model, regularization_terms, reg_lambda, device
)
losses_regularization.update(
regularization_loss.data.item(), inputs_forget.size(0)
)
losses = regularization_loss + loss_forget
losses_total.update(losses.data.item(), inputs_forget.size(0))
optimizer.zero_grad()
losses.backward()
optimizer.step()
# display training loss & accuracy every DISP_FREQ iterations
if ((batch + 1) % DISP_FREQ == 0) and batch != 0:
epoch_loss_CE = losses_CE.avg
epoch_loss_regularization = losses_regularization.avg
epoch_loss_total = losses_total.avg
wandb.log(
{
"epoch_loss_CE-{}".format(task_i): epoch_loss_CE,
"epoch_loss_regularization-{}".format(
task_i
): epoch_loss_regularization,
"epoch_loss_total-{}".format(task_i): epoch_loss_total,
}
)
print(
"Task {} Epoch {} Batch {}\t"
"Training CE Loss {loss_CE.val:.4f} ({loss_CE.avg:.4f})\t"
"Training regularization Loss {loss_regularization.val:.4f} ({loss_regularization.avg:.4f})\t"
"Training total Loss {loss_total.val:.4f} ({loss_total.avg:.4f})".format(
task_i,
epoch + 1,
batch + 1,
loss_CE=losses_CE,
loss_regularization=losses_regularization,
loss_total=losses_total,
)
)
# reset average meters
losses_CE = util.AverageMeter()
losses_regularization = util.AverageMeter()
losses_total = util.AverageMeter()
if ((batch + 1) % VER_FREQ == 0) and batch != 0:
highest_H_mean = evaluate(
model,
testloader_forget=testloader_forget,
testloader_remain=testloader_remain,
device=device,
batch=batch,
epoch=epoch,
task_i=task_i,
forget_acc_before=forget_acc_before,
highest_H_mean=highest_H_mean,
cfg=cfg,
optimizer=optimizer,
testloader_open=testloader_open,
)
model.train()
batch += 1
return batch, highest_H_mean, losses_CE, losses_regularization, losses_total