-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathappB.jl
322 lines (250 loc) · 7.85 KB
/
appB.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Bogumił Kamiński, 2021
# Codes for appendix B
# the solutions for exercises from a given chapter assume that
# there are packages loaded, variables and functions defined in the user's
# Julia session in a state that reflects the point of computations
# at the position of the chapter where a given exercise is formulated
# Code for exercise 3.1
using BenchmarkTools
x = 1:10^6;
y = collect(x);
@btime sort($x);
@btime sort($y);
@edit sort(x)
# Code for exercise 4.1
using Statistics
using BenchmarkTools
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89];
@benchmark [cor($aq[:, i], $aq[:, i+1]) for i in 1:2:7]
@benchmark [cor(view($aq, :, i), view($aq, :, i+1)) for i in 1:2:7]
[cor(@view(aq[:, i]), @view(aq[:, i+1])) for i in 1:2:7]
# Code for exercise 4.2
function dice_distribution(dice1, dice2)
distribution = Dict{Int, Int}()
for i in dice1
for j in dice2
s = i + j
if haskey(distribution, s)
distribution[s] += 1
else
distribution[s] = 1
end
end
end
return distribution
end
function test_dice()
all_dice = [[1, x2, x3, x4, x5, x6]
for x2 in 2:11
for x3 in x2:11
for x4 in x3:11
for x5 in x4:11
for x6 in x5:11]
two_standard = dice_distribution(1:6, 1:6)
for d1 in all_dice, d2 in all_dice
test = dice_distribution(d1, d2)
if test == two_standard
println(d1, " ", d2)
end
end
end
test_dice()
# Code for exercise 4.3
plot(scatter(data.set1.x, data.set1.y; legend=false),
scatter(data.set2.x, data.set2.y; legend=false),
scatter(data.set3.x, data.set3.y; legend=false),
scatter(data.set4.x, data.set4.y; legend=false))
# Code for exercise 5.1
parse.(Int, ["1", "2", "3"])
# Code for exercise 5.2
Random.seed!(1234);
data5bis = [randn(100, 5) .- 0.4; randn(100, 5) .+ 0.4];
tsne = manifold.TSNE(n_components=2, init="random",
learning_rate="auto", random_state=1234);
data2bis = tsne.fit_transform(data5bis);
scatter(data2bis[:, 1], data2bis[:, 2];
color=[fill("black", 100); fill("gold", 100)],
legend=false)
# Code for exercise 6.1
years_table = freqtable(years)
plot(names(years_table, 1), years_table; legend=false,
xlabel="year", ylabel="# of movies")
# Code for exercise 6.2
s3 = Symbol.(s1)
@btime sort($s3);
@btime unique($s1);
@btime unique($s2);
@btime unique($s3);
# Code for exercise 7.1
v = ["1", "2", missing, "4"]
[ismissing(x) ? missing : parse(Int, x) for x in v]
map(v) do x
if ismissing(x)
return missing
else
return parse(Int, x)
end
end
using Missings
passmissing(parse).(Int, v)
# Code for exercise 7.2
using Dates
Date(2021, 1, 1):Month(1):Date(2021, 12, 1)
collect(Date(2021, 1, 1):Month(1):Date(2021, 12, 1))
# Code for exercise 7.3
query2 = "https://api.nbp.pl/api/exchangerates/rates/a/usd/" *
"2020-06-01/2020-06-30/?format=json";
response2 = HTTP.get(query2);
json2 = JSON3.read(response2.body)
rates2 = [x.mid for x in json2.rates]
dates2 = [Date(x.effectiveDate) for x in json2.rates]
has_rate = rates .!== missing
rates2 == rates[has_rate]
dates2 == dates[has_rate]
# Code for exercise 8.1
using BenchmarkTools
@btime $puzzles."Rating";
# Code for exercise 9.1
using StatsBase
summarystats(puzzles[puzzles.Popularity .== 100, "NbPlays"])
summarystats(puzzles[puzzles.Popularity .== -100, "NbPlays"])
# Code for exercise 9.2
sum(length, values(rating_mapping))
nrow(good)
# Code for exercise 9.3
model2 = loess(ratings, mean_popularities; span=0.25);
popularity_predict2 = predict(model2, ratings_predict);
plot!(ratings_predict, popularity_predict2; width=5, color="yellow");
# Code for exercise 10.1
using BenchmarkTools
x = rand(10^6);
@btime DataFrame(x=$x);
@btime DataFrame(x=$x; copycols=false);
# Code for exercise 10.2
df1 = DataFrame(a=1,b=2)
df2 = DataFrame(b=3, a=4)
vcat(df1, df2)
vcat(df1, df2, cols=:orderequal)
# Code for exercise 10.3
function walk_unique_2ahead()
walk = DataFrame(x=0, y=0)
for _ in 1:10
current = walk[end, :]
push!(walk, sim_step(current))
end
return all(walk[i, :] != walk[i+2, :] for i in 1:9)
end
Random.seed!(2);
proptable([walk_unique_2ahead() for _ in 1:10^5])
# Code for exercise 11.1
@time wide = DataFrame(ones(1, 10_000), :auto);
@time wide = DataFrame(ones(1, 10_000), :auto);
@time Tables.columntable(wide);
@time Tables.columntable(wide);
# Code for exercise 11.2
using Statistics
Dict(key.city => mean(df.rainfall) for (key, df) in pairs(gdf_city))
combine(gdf_city, :rainfall => mean)
# Code for exercise 12.1
cg = complete_graph(37700)
Base.summarysize(cg)
@time deg_class(cg, classes_df.ml_target);
# Code for exercise 12.2
scatter(log1p.(agg_df.deg_ml),
log1p.(agg_df.deg_web);
zcolor=agg_df.web_mean,
xlabel="degree ml", ylabel="degree web",
markersize=2, markerstrokewidth=0.5, markeralpha=0.8,
legend=:topleft, labels = "fraction web",
xticks=gen_ticks(maximum(classes_df.deg_ml)),
yticks=gen_ticks(maximum(classes_df.deg_web)))
# Code for exercise 12.3
glm(@formula(ml_target~log1p(deg_ml)+log1p(deg_web)),
classes_df, Binomial(), ProbitLink())
# Code for exercise 12.4
df = DataFrame()
df.a = [1, 2, 3]
df.b = df.a
df.b === df.a
df.b = df[:, "b"]
df.b === df.a
df.b == df.a
df[1:2, "a"] .= 10
df
# Code for exercise 13.1
@rselect(owensboro,
:arrest = :arrest_made,
:day = dayofweek(:date),
:type,
:v1 = contains(:violation, agg_violation.v[1]),
:v2 = contains(:violation, agg_violation.v[2]),
:v3 = contains(:violation, agg_violation.v[3]),
:v4 = contains(:violation, agg_violation.v[4]))
# Code for exercise 13.2
select(owensboro,
:arrest_made => :arrest,
:date => ByRow(dayofweek) => :day,
:type,
[:violation =>
ByRow(x -> contains(x, agg_violation.v[i])) =>
"v$i" for i in 1:4],
:date => ByRow(dayname) => :dayname)
# Code for exercise 13.3
@chain owensboro2 begin
groupby(:dayname, sort=true)
combine(:arrest => mean)
end
@chain owensboro2 begin
groupby([:dayname, :type], sort=true)
combine(:arrest => mean)
unstack(:dayname, :type, :arrest_mean)
end
# Code for exercise 13.4
train2 = owensboro2[owensboro2.train, :]
test2 = owensboro2[.!owensboro2.train, :]
test3, train3 = groupby(owensboro2, :train, sort=true)
# Code for exercise 14.1
@time mean(x -> x < 0, -10^6:10^6)
@time mean(x -> x < 0, -10^6:10^6)
@time mean(x -> x < 0, -10^6:10^6)
@time mean(<(0), -10^6:10^6)
@time mean(<(0), -10^6:10^6)
@time mean(<(0), -10^6:10^6)
lt0(x) = x < 0
@time mean(lt0, -10^6:10^6)
@time mean(lt0, -10^6:10^6)
@time mean(lt0, -10^6:10^6)
# Code for exercise 14.2
# web service code
using Genie
Genie.config.run_as_server = true
Genie.Router.route("/", method=POST) do
message = Genie.Requests.jsonpayload()
return try
n = message["n"]
Genie.Renderer.Json.json(rand(n))
catch
Genie.Responses.setstatus(400)
end
end
Genie.Server.up()
# client code
using HTTP
using JSON3
req = HTTP.post("http://127.0.0.1:8000",
["Content-Type" => "application/json"],
JSON3.write((n=3,)))
JSON3.read(req.body)
HTTP.post("http://127.0.0.1:8000",
["Content-Type" => "application/json"],
JSON3.write((x=3,)))