-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathch04.jl
222 lines (167 loc) · 4.74 KB
/
ch04.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Bogumił Kamiński, 2021
# Codes for chapter 4
# Code for listing 4.1
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89]
# Code for checking size of a matrix
size(aq)
size(aq, 1)
size(aq, 2)
# Code comparing tuple to a vector
v = [1, 2, 3]
t = (1, 2, 3)
v[1]
t[1]
v[1] = 10
v
t[1] = 10
# Code for figure 4.2
using BenchmarkTools
@benchmark (1, 2, 3)
@benchmark [1, 2, 3]
# Code comparing vector and tuple construction
[1, 2.0]
(1, 2.0)
# Code for section 4.1.2
using Statistics
mean(aq; dims=1)
std(aq; dims=1)
map(mean, eachcol(aq))
map(std, eachcol(aq))
map(eachcol(aq)) do col
mean(col)
end
[mean(col) for col in eachcol(aq)]
[std(col) for col in eachcol(aq)]
x = (-2, -1, 0, 1, 2)
[abs(v) for v in x]
map(abs, x)
# Code for section 4.1.3
[mean(aq[:, j]) for j in axes(aq, 2)]
[std(aq[:, j]) for j in axes(aq, 2)]
axes(aq, 2)
# - change to help mode by pressing `?` key
# - type "Base.OneTo" and press Enter
[mean(view(aq, :, j)) for j in axes(aq, 2)]
[std(@view aq[:, j]) for j in axes(aq, 2)]
# Code for section 4.1.4
using BenchmarkTools
x = ones(10^7, 10)
@btime [mean(@view $x[:, j]) for j in axes($x, 2)];
@btime [mean($x[:, j]) for j in axes($x, 2)];
@btime mean($x, dims=1);
# Code for section 4.1.5
[cor(aq[:, i], aq[:, i+1]) for i in 1:2:7]
collect(1:2:7)
# Code for section 4.1.6
y = aq[:, 2]
X = [ones(11) aq[:, 1]]
X \ y
[[ones(11) aq[:, i]] \ aq[:, i+1] for i in 1:2:7]
function R²(x, y)
X = [ones(11) x]
model = X \ y
prediction = X * model
error = y - prediction
SS_res = sum(v -> v ^ 2, error)
mean_y = mean(y)
SS_tot = sum(v -> (v - mean_y) ^ 2, y)
return 1 - SS_res / SS_tot
end
[R²(aq[:, i], aq[:, i+1]) for i in 1:2:7]
# - change to help mode by pressing `?` key
# - type (or copy-paste) "²" and press Enter
# Code for section 4.1.7
using Plots
scatter(aq[:, 1], aq[:, 2]; legend=false)
plot(scatter(aq[:, 1], aq[:, 2]; legend=false),
scatter(aq[:, 3], aq[:, 4]; legend=false),
scatter(aq[:, 5], aq[:, 6]; legend=false),
scatter(aq[:, 7], aq[:, 8]; legend=false))
plot([scatter(aq[:, i], aq[:, i+1]; legend=false)
for i in 1:2:7]...)
# Code for section 4.2
two_standard = Dict{Int, Int}()
for i in [1, 2, 3, 4, 5, 6]
for j in [1, 2, 3, 4, 5, 6]
s = i + j
if haskey(two_standard, s)
two_standard[s] += 1
else
two_standard[s] = 1
end
end
end
two_standard
keys(two_standard)
values(two_standard)
using Plots
scatter(collect(keys(two_standard)), collect(values(two_standard));
legend=false, xaxis=2:12)
all_dice = [[1, x2, x3, x4, x5, x6]
for x2 in 2:11
for x3 in x2:11
for x4 in x3:11
for x5 in x4:11
for x6 in x5:11]
for d1 in all_dice, d2 in all_dice
test = Dict{Int, Int}()
for i in d1, j in d2
s = i + j
if haskey(test, s)
test[s] += 1
else
test[s] = 1
end
end
if test == two_standard
println(d1, " ", d2)
end
end
# Code for section 4.3
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89]
dataset1 = (x=aq[:, 1], y=aq[:, 2])
dataset1[1]
dataset1.x
# Code for listing 4.2
data = (set1=(x=aq[:, 1], y=aq[:, 2]),
set2=(x=aq[:, 3], y=aq[:, 4]),
set3=(x=aq[:, 5], y=aq[:, 6]),
set4=(x=aq[:, 7], y=aq[:, 8]))
# Code for section 4.3.2
using Statistics
map(s -> mean(s.x), data)
map(s -> cor(s.x, s.y), data)
using GLM
model = lm(@formula(y ~ x), data.set1)
r2(model)
# Code for section 4.3.3
model.mm
x = [3, 1, 3, 2]
unique(x)
x
unique!(x)
x
empty_field!(nt, i) = empty!(nt[i])
nt = (dict = Dict("a" => 1, "b" => 2), int=10)
empty_field!(nt, 1)
nt