-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathch14.jl
158 lines (119 loc) · 3.73 KB
/
ch14.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Bogumił Kamiński, 2022
# Codes for chapter 14
# Codes for section 14.1
using Plots
using Statistics
X = [1.0, 1.1, 1.3, 1.2, 1.2]
T = 1.0
m = 4
Y = mean(X)
K = 1.05
plot(range(0.0, T; length=m+1), X;
xlabel="T", legend=false, color="black")
hline!([Y], color="gray", lw=3, ls=:dash)
hline!([K], color="gray", lw=3, ls=:dot)
annotate!([(T, Y + 0.01, "Y"),
(T, K + 0.01, "K"),
(T, X[end] + 0.01, "X")])
using DataFrames
using Random
Random.seed!(1234);
X0, T, s, r, m = 1.0, 2.0, 0.2, 0.1, 4
gbm = DataFrame(X=X0, t=0.0)
for i in 1:m
Z = randn()
log_return = (r - s^2/2) * T/m + s * sqrt(T/m) * Z
next_X = gbm.X[end] * exp(log_return)
next_t = gbm.t[end] + T/m
push!(gbm, (next_X, next_t))
end
gbm
# Codes for section 14.2
# start Julia with and additional -t4 command line switch
Threads.nthreads()
# Code for listing 14.1
function payoff_asian_sample(T, X0, K, r, s, m)::Float64
X = X0
sumX = X
d = T / m
for i in 1:m
X *= exp((r - s^2 / 2) * d + s * sqrt(d) * randn())
sumX += X
end
Y = sumX / (m + 1)
return exp(-r * T) * max(Y - K, 0)
end
# Code for checking the results of the payoff simulation
payoff_asian_sample(1.0, 50.0, 55.0, 0.05, 0.3, 200)
payoff_asian_sample(1.0, 50.0, 55.0, 0.05, 0.3, 200)
payoff_asian_sample(1.0, 50.0, 55.0, 0.05, 0.3, 200)
# Benchmarking map
using BenchmarkTools
@btime map(i -> payoff_asian_sample(1.0, 50.0, 55.0, 0.05, 0.3, 200), 1:10_000);
using ThreadsX
@btime ThreadsX.map(i -> payoff_asian_sample(1.0, 50.0, 55.0, 0.05, 0.3, 200), 1:10_000);
# Codes for section 14.3
# Code for listing 14.2
using Statistics
function asian_value(T, X0, K, r, s, m, max_time)
result = Float64[]
start_time = time()
while time() - start_time < max_time
append!(result, ThreadsX.map(i -> payoff_asian_sample(T, X0, K, r, s, m), 1:10_000))
end
n = length(result)
mv = mean(result)
sdv = std(result)
lo95 = mv - 1.96 * sdv / sqrt(n)
hi95 = mv + 1.96 * sdv / sqrt(n)
zero = mean(==(0), result)
return (; n, mv, lo95, hi95, zero)
end
# Code for example of the mean function
mean(x -> x ^ 2, [1, 2, 3])
eq0 = ==(0)
eq0(1)
eq0(0)
# Code for shorthand NamedTuple notation
val1 = 10
val2 = "x"
(; val1, val2)
# Testing asian_value function
@time asian_value(1.0, 50.0, 55.0, 0.05, 0.3, 200, 0.25)
@time asian_value(1.0, 50.0, 55.0, 0.05, 0.3, 200, 0.25)
@time asian_value(1.0, 50.0, 55.0, 0.05, 0.3, 200, 0.25)
# Converting NamedTuple to JSON response
using Genie
Genie.Renderer.Json.json((firstname="Bogumił", lastname="Kamiński"))
# Codes for section 14.4
# Start a new Julia session
using HTTP
using JSON3
req = HTTP.post("http://127.0.0.1:8000",
["Content-Type" => "application/json"],
JSON3.write((K=55.0, max_time=0.25)))
JSON3.read(req.body)
JSON3.write((K=55.0, max_time=0.25))
HTTP.post("http://127.0.0.1:8000",
["Content-Type" => "application/json"],
JSON3.write((K="", max_time=0.25)))
using DataFrames
df = DataFrame(K=30:2:80, max_time=0.25)
df.data = map(df.K, df.max_time) do K, max_time
@show K
@time req = HTTP.post("http://127.0.0.1:8000",
["Content-Type" => "application/json"],
JSON3.write((;K, max_time)))
return JSON3.read(req.body)
end;
df
all(x -> x.status == "OK", df.data)
small_df = DataFrame(x=[(a=1, b=2), (a=3, b=4), (a=5, b=6)])
transform(small_df, :x => identity => AsTable)
transform(small_df, :x => AsTable)
df2 = select(df, :K, :data => ByRow(x -> x.value) => AsTable)
using Plots
plot(plot(df2.K, df2.mv; legend=false,
xlabel="K", ylabel="expected value"),
plot(df2.K, df2.zero; legend=false,
xlabel="K", ylabel="probability of zero"))