-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_using_config.py
187 lines (168 loc) · 9.07 KB
/
eval_using_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import sys
sys.stdout = open(sys.stdout.fileno(), mode='w', buffering=1)
sys.stderr = open(sys.stderr.fileno(), mode='w', buffering=1)
import os
import pathlib
import hydra
import torch
import dill
import wandb
import json
from diffusion_policy.workspace.base_workspace import BaseWorkspace
from diffusion_policy.env_runner.robomimic_image_runner import AdversarialRobomimicImageRunner
from omegaconf import OmegaConf
from hydra.core.hydra_config import HydraConfig
from hydra.utils import to_absolute_path, instantiate
from hydra.core.global_hydra import GlobalHydra
import pickle
torch.backends.cudnn.enabled = True
def get_run_name(checkpoint, cfg, attack, view):
if attack:
return f'{checkpoint.split("/")[-6]}-{checkpoint.split("/")[-5]}-{checkpoint.split("/")[-4]}-' \
f'{checkpoint.split("/")[-3]}-{cfg.attack_type}_adversarial_on_{view}_tar_{cfg.targeted}'
else:
return f'{checkpoint.split("/")[-6]}-{checkpoint.split("/")[-5]}-{checkpoint.split("/")[-4]}-{checkpoint.split("/")[-3]}'
# return f'bet_pgd_perturbation_gradview_check_{cfg.perturbations}'
def init_wandb(checkpoint, cfg, attack, view):
run_name = get_run_name(checkpoint, cfg, attack, view)
# Try to find an existing run with a similar name
api = wandb.Api()
# project = "grad_check_adv"
project = "BC_Evaluation"
# project = "transferability_adv"
# project = "vanilla_bc_image_policy"
runs = api.runs(f"sagar8/{project}")
existing_run = None
for run in runs:
if run.name == run_name:
existing_run = run
break
# if existing_run:
# # If a run with the same name exists, resume it
# return wandb.init(project=project, id=existing_run.id, resume='must')
# else:
# # If no matching run exists, create a new one
return wandb.init(project=project, name=run_name)
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='diffusion_policy_image_ph_pick_pgd_adversarial')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='lstm_gmm_image_ph_pick_pgd_adversarial')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='lstm_gmm_image_ph_pick_adversarial')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='lstm_gmm_image_ph_pick_adversarial_patch')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='ibc_image_ph_pick_adversarial_patch.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='vanilla_bc_ph_pick_adversarial_patch.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='bet_image_ph_pick_pgd_adversarial_patch.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='ibc_image_ph_pick_adversarial.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='vanilla_bc_image_ph_pick_pgd_adversarial.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='ibc_image_ph_pick_adversarial.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='bet_image_ph_pick_adversarial.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='ibc_image_ph_pick_pgd_adversarial.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='diffusion_policy_image_pusht.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='lstm_gmm_image_pusht.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='vqbet_robomimic_image_ph_pick_adversarial.yaml')
@hydra.main(config_path='diffusion_policy/eval_configs', config_name='ibc_pusht_pgd_adversarial.yaml')
# @hydra.main(config_path='diffusion_policy/eval_configs', config_name='diffusion_policy_pusht_pgd_adversarial.yaml')
def main(cfg):
checkpoint = cfg.checkpoint
task = cfg.task
algo = cfg.algo
n_envs = cfg.n_envs
device = cfg.device
attack = cfg.attack
epsilon = cfg.epsilon
dataset_path = cfg.dataset_path
view = cfg.view
print(f"Running attack {attack} on {view} view")
# the output directory should depend on the current directory and the checkpoint path and the attack type and epsilon
output_dir = os.path.join(os.getcwd(), f"diffusion_policy/data/experiments/image/{task}/{algo}/eval_{checkpoint.split('/')[-3]}_{epsilon}_{view}")
if os.path.exists(output_dir):
raise ValueError(f"Output path {output_dir} already exists!")
pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True)
payload = torch.load(open(checkpoint, 'rb'), pickle_module=dill)
cfg_loaded = payload['cfg']
cfg.action_space = cfg_loaded.shape_meta.action.shape
cls = hydra.utils.get_class(cfg_loaded._target_)
workspace = cls(cfg_loaded, output_dir=output_dir)
workspace: BaseWorkspace
workspace.load_payload(payload, exclude_keys=None, include_keys=None)
try:
policy = workspace.model
except AttributeError:
policy = workspace.policy
if attack:
print("Running adversarial Attack")
cfg_loaded.task.env_runner['_target_'] = cfg._target_
cfg_loaded.task.env_runner['n_envs'] = n_envs
if cfg.max_steps is not None:
cfg_loaded.task.env_runner['max_steps'] = cfg.max_steps
if cfg.n_test > 0:
cfg_loaded.task.env_runner['n_test'] = cfg.n_test
if cfg.n_train > 0:
cfg_loaded.task.env_runner['n_train'] = cfg.n_train
try:
cfg_loaded.task.env_runner['dataset_path'] = str(dataset_path)
except:
print("No dataset path provided")
pass
try:
if cfg_loaded.training.use_ema:
policy = workspace.ema_model
except:
pass
if cfg.log:
# wandb.init(project='BC_Evaluation', name=f'{checkpoint.split("/")[-6]}-{checkpoint.split("/")[-5]}-{checkpoint.split("/")[-4]}-\
# {checkpoint.split("/")[-3]}-{cfg.attack_type}_adversarial_on_{view}_randtar_{cfg.rand_target}' if attack else
# f'{checkpoint.split("/")[-6]}-{checkpoint.split("/")[-5]}-{checkpoint.split("/")[-4]}-{checkpoint.split("/")[-3]}')
# wandb.init(project='BC_Evaluation', id='kfn7tfal', resume='must')
# wandb.init(project='ibc_pgd_experimentation', name=f'epsilon-{cfg.epsilons[0]}-rand_target-{cfg.rand_target}-rand_init-{cfg.rand_int}')
# wandb.init(project='ibc_pgd_experimentation', name=f'epsilon-{cfg.epsilons[0]}-target_perturbations-{cfg.target_perturbations}-pertubation-{cfg.perturbations[1]}')
# wandb.init(project="BC_Evaluation", id='n3nvemg8', resume='must')
# wandb.init(project='diffusion_experimentation', name=f'diffusion_policy_norm_monitoring')
# wandb.init(project='adv_patch_test', name=f'lstm_gmm_{checkpoint.split("/")[-3]}_{cfg.patch_type}_patch')
# wandb.init(project='adv_patch_test', name=f'vanilla_bc_{checkpoint.split("/")[-3]}_{cfg.patch_type}_patch')
wandb_run = init_wandb(checkpoint, cfg, attack, view)
print("Wandb run initialized", wandb_run)
config_path = 'diffusion_policy/eval_configs'
# config_name = 'diffusion_policy_image_ph_pick_pgd_adversarial'
# config_name = 'vanilla_bc_ph_pick_adversarial_patch'
# config_name = 'ibc_image_ph_pick_adversarial'
# config_name = 'lstm_gmm_image_ph_pick_adversarial'
config_name = 'bet_image_ph_pick_adversarial'
# config_name = 'ibc_image_ph_pick_pgd_adversarial'
# config_name = 'vanilla_bc_image_ph_pick_pgd_adversarial'
# wandb.log({"xloc": cfg.x_loc, "yloc": cfg.y_loc, "patch_size": cfg.patch_size})
# config_name = 'lstm_gmm_image_ph_pick_pgd_adversarial'
config_file_path = to_absolute_path(f"{config_path}/{config_name}.yaml")
# save the config file to wandb from the hydras config
wandb.save(config_file_path)
device = torch.device(device)
policy.to(device)
policy.eval()
env_runner = hydra.utils.instantiate(
cfg_loaded.task.env_runner,
output_dir=output_dir)
if attack and cfg.attack_type == 'patch':
patch = pickle.load(open(cfg.patch_path, 'rb'))
# print("Shape of the patch: ", patch.shape)
# patch[0, :] = torch.ones_like(patch[0, :])
# patch[0, 0] = torch.ones_like(patch[0, 0])
# patch[0, 1] = torch.ones_like(patch[0, 1])
# print(patch[0])
runner_log = env_runner.run(policy, adversarial_patch=patch, cfg=cfg)
elif attack:
runner_log = env_runner.run(policy, epsilon=cfg.epsilon, cfg=cfg)
else:
runner_log = env_runner.run(policy, cfg=cfg)
json_log = dict()
for key, value in runner_log.items():
if isinstance(value, wandb.sdk.data_types.video.Video):
json_log[key] = value._path
else:
json_log[key] = value
if cfg.log:
wandb.log({"test/mean_score": json_log["test/mean_score"], "train/mean_score": json_log["train/mean_score"], \
"Epsilon":float(cfg.epsilon)})
print("Test/mean_score: ", json_log["test/mean_score"])
out_path = os.path.join(output_dir, 'eval_log.json')
json.dump(json_log, open(out_path, 'w'), indent=2, sort_keys=True)
wandb.finish()
if __name__ == '__main__':
main()