forked from fedbiomed/fedbiomed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dataset_manager.py
1105 lines (926 loc) · 45.3 KB
/
test_dataset_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import inspect
import numpy as np
import os
import pandas as pd
import shutil
from typing import List
import unittest
from unittest import mock
from unittest.mock import MagicMock, patch
from torch.utils.data import Dataset
import tempfile
import pathlib
from PIL import Image
import torch
from torchvision import transforms, datasets
from tinydb import Query
#############################################################
# Import NodeTestCase before importing any FedBioMed Module
from testsupport.base_case import NodeTestCase
#############################################################
# Test Support
from testsupport.fake_uuid import FakeUuid
from testsupport.testing_data_loading_block import LoadingBlockTypesForTesting
from fedbiomed.node.environ import environ
from fedbiomed.node.dataset_manager import DatasetManager, DataLoadingPlan
from fedbiomed.common.exceptions import FedbiomedDatasetManagerError
class TestDatasetManager(NodeTestCase):
"""
Unit Tests for DatasetManager class.
"""
class FakePytorchDataset(Dataset):
"""
This class fakes a very simple custom dataset (data
structure), that should be used within PyTorch framework.
It can be used to mimic MNIST and images datasets.
For further information, please visit Pytorch documentation.
"""
def __init__(self, data, labels):
self._data = data
self._labels = labels
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
return self._data[idx], self._labels[idx]
def setUp(self):
"""
run this at the begining of each test
get the path of the test data folder (containing real data
for the test)
"""
self.testdir = os.path.join(
os.path.dirname(
os.path.abspath(inspect.getfile(inspect.currentframe()))
),
"test-data"
)
# create an instance of DatasetManager
self.patcher_dataset_manager_environ = patch('fedbiomed.node.dataset_manager.environ', environ)
self.patcher_dataset_manager_environ.start()
self.dataset_manager = DatasetManager()
# fake arguments
# fake_database attribute fakes the resut of query over
# a database (eg `tinydb.queries.Query.all`)
self.fake_database = {"1": {"name": "MNIST",
"data_type": "default",
"tags": ["#MNIST", "#dataset"],
"description": "MNIST database",
"shape": [60000, 1, 28, 28],
"path": "/path/to/MNIST",
"dataset_id": "dataset_1234",
"dtypes": []},
"2": {"name": "test",
"data_type": "csv",
"tags": ["some", "tags"],
"description": "test",
"shape": [1000, 2],
"path": "/path/to/my/data",
"dataset_id": "dataset_4567",
"dtypes": ["float64", "int64"]}
}
# creating a fake pytorch dataset:
self.fake_dataset_shape = (12_345, 10, 20, 30)
fake_data = torch.rand(self.fake_dataset_shape)
fake_labels = torch.randint(0, 2, (self.fake_dataset_shape[0],))
self.fake_dataset = TestDatasetManager.FakePytorchDataset(fake_data, fake_labels)
# dummy_data for pandas dataframe stuff
self.dummy_data = {'integers': [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
'floats': [1.1, 1.2, 1.3, 1.4, 1.5, 2.6, 2.7, 1.8, 2.9, 1.0],
'chars': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'],
'booleans': [True, False, True, False, True] * 2
}
self.tempdir = tempfile.mkdtemp() # Creates and returns tempdir to save temp images
def tearDown(self):
"""
after each test function
"""
self.patcher_dataset_manager_environ.stop()
self.dataset_manager._db.close()
del self.dataset_manager
if os.path.isdir(environ['DB_PATH']):
os.remove(environ['DB_PATH'])
shutil.rmtree(self.tempdir)
def test_dataset_manager_01_get_by_id_non_existing_dataset_id(self):
"""
Test `search_by_id` method with a non existing id
"""
# action (should return an empty array)
res = self.dataset_manager.get_by_id('dataset_id_1234')
self.assertEqual(res, None)
@patch('tinydb.table.Table.get')
def test_dataset_manager_02_get_by_id(self,
tinydb_get_patch):
"""
Simulates a query with a correct dataset id by patching Query and
Table.search object/methods
"""
# arguments
search_results = {'dataset_id': 'datset_id_1234'}
dataset_id = 'dataset_id_1234'
# patches
tinydb_get_patch.return_value = search_results
# action
res = self.dataset_manager.get_by_id(dataset_id)
# checks
self.assertEqual(search_results, res)
tinydb_get_patch.assert_called_once()
def test_dataset_manager_03_search_by_tags(self):
"""
tests `search_by_tags` method with non existing tags
"""
res = self.dataset_manager.search_by_tags('dataset_id_1234')
# method `search_by_tags` should return an empty list
self.assertEqual(res, [])
@patch('tinydb.queries.Query.all')
@patch('tinydb.table.Table.search')
def test_dataset_manager_04_search_by_tags(self,
tinydb_search_patch,
queries_all_patch
):
"""
Simulates a query with correct dataset tags by patching Query and
Table.search object/methods
"""
# arguments
search_results = [{'dataset_id': 'datset_id_1234'}]
dataset_tags = ['some', 'tags']
# patches
tinydb_search_patch.return_value = search_results
# action
res = self.dataset_manager.search_by_tags(dataset_tags)
# checks
self.assertEqual(search_results, res)
queries_all_patch.assert_called_once_with(dataset_tags)
tinydb_search_patch.assert_called_once()
def test_dataset_manager_05_read_csv_with_header(self):
"""
Tests if `read_csv` method is able to identify and parse
the csv file 'tata-header.csv' (containing a header)
"""
# action
res = self.dataset_manager.read_csv(
os.path.join(self.testdir,
"csv",
"tata-header.csv"
)
)
# checks if the file has been correctly parsed
self.assertIsInstance(res, pd.DataFrame)
self.assertListEqual(list(res.columns), ['Titi', 'Tata', 'Toto'])
def test_dataset_manager_06_red_csv_without_header(self):
"""
Tests if `read_csv` method is able to identify and parse
the csv file 'titi-normal.csv' (which does not contain a headers)
"""
# action
res = self.dataset_manager.read_csv(os.path.join(self.testdir,
"csv",
"titi-normal.csv"
)
)
# checks if the file has been correctly parsed
self.assertIsInstance(res, pd.DataFrame)
# when there are no headers detected in csv file, pandas automatically
# creates headers (integers from 0 to the number of columns)
# in the assertion below, we are testing that headers will be
# auomatically created and named [0,1,2,3]
self.assertListEqual(list(res.columns), [0, 1, 2, 3])
def test_dataset_manager_07_get_torch_dataset_shape(self):
"""
Tests if method `get_torch_dataset_shape` works
on a custom dataset
"""
# action
res = self.dataset_manager.get_torch_dataset_shape(self.fake_dataset)
# checks
self.assertListEqual(res, list(self.fake_dataset_shape))
def test_dataset_manager_08_get_csv_data_types(self):
"""
Tests `get_csv_data_type` (normal case scenario)
"""
# creating argument for unittest
fake_csv_dataframe = pd.DataFrame(self.dummy_data)
# action
data_types = self.dataset_manager.get_csv_data_types(fake_csv_dataframe)
# checks
self.assertListEqual(data_types, ['int64', 'float64', 'object', 'bool'])
@patch('torchvision.datasets.MNIST')
def test_dataset_manager_09_load_default_database_as_dataset(self,
dataset_mnist_patch):
"""
Tests if `load_default_dataset` is loading the default dataset and
returns it (arg `as_dataset` set to True)
"""
# defining patcher
dataset_mnist_patch.return_value = self.fake_dataset
# defining arguments
database_name = 'MNIST'
database_path = '/path/to/MNIST/dataset'
# action
# currently, only MNIST dataset is considered as the default dataset
res_dataset = self.dataset_manager.load_default_database(database_name,
database_path,
as_dataset=True)
# checks
self.assertEqual(res_dataset, self.fake_dataset)
# Below, we are not testing that MNIST patch has been calling
# with the good argument for 'transform``
dataset_mnist_patch.assert_called_once_with(root=database_path,
download=True,
transform=mock.ANY)
@patch('fedbiomed.node.dataset_manager.DatasetManager.get_torch_dataset_shape')
@patch('torchvision.datasets.MNIST')
def test_dataset_manager_10_load_default_database_as_dataset_false(self,
dataset_mnist_patch,
get_torch_dataset_shape_patch,
):
"""
Tests if `load_default_dataset` is loading the default dataset and
returns its shape (arg `as_dataset` set to False)
"""
# patches
dataset_mnist_patch.return_value = self.fake_dataset
get_torch_dataset_shape_patch.return_value = self.fake_dataset_shape
# defining arguments
database_name = 'MNIST'
database_path = '/path/to/MNIST/dataset'
# action
res_dataset = self.dataset_manager.load_default_database(database_name,
database_path,
as_dataset=False)
# checks
# we are using `mock.ANY` because we cannot get the object
# 'torchivison.transform.ToTensor' used
dataset_mnist_patch.assert_called_once_with(root=database_path,
download=True,
transform=mock.ANY)
get_torch_dataset_shape_patch.assert_called_once_with(self.fake_dataset)
# check that correct dataset shape has been computed
self.assertEqual(res_dataset, self.fake_dataset_shape)
def test_dataset_manager_11_load_default_database_exception(self):
"""
Tests if exception `NotImplemntedError` is triggered
when passing an unknown dataset
"""
with self.assertRaises(NotImplementedError):
# action: we are here passing an unknown dataset
# we are checking method is raising NotImplementedError
self.dataset_manager.load_default_database('my_default_dataset',
'/path/to/my/default/dataset')
@patch('torchvision.datasets.ImageFolder')
def test_dataset_manager_12_load_images_dataset_as_dataset_true(self, imgfolder_patch):
"""
Tests case where one is loading image dataset with argument
`as_dataset` is set to True
"""
# defining patcher
imgfolder_patch.return_value = self.fake_dataset
# arguments
database_path = '/path/to/MNIST/dataset'
# action
dataset = self.dataset_manager.load_images_dataset(database_path, as_dataset=True)
# checks
self.assertEqual(dataset, self.fake_dataset)
imgfolder_patch.assert_called_once_with(database_path,
transform=mock.ANY)
def test_dataset_manager_13_load_images_dataset_as_dataset_false(self):
"""
Tests case where one is loading image dataset with argument
`as_dataset` is set to False
"""
# arguments
dataset_path = os.path.join(self.testdir,
"images")
# action
res_dataset_shape = self.dataset_manager.load_images_dataset(dataset_path,
as_dataset=False)
# checks
self.assertListEqual(res_dataset_shape, [5, 3, 30, 60])
@patch('fedbiomed.node.dataset_manager.DatasetManager.read_csv')
def test_dataset_manager_14_load_csv_dataset(self, read_csv_patch):
"""
Tests `load_csv_method` (normal case scenario)
"""
# patchers
dummy_data = pd.DataFrame(self.dummy_data)
read_csv_patch.return_value = dummy_data
# arguments
database_path = '/path/to/csv/dataset'
# action
data = self.dataset_manager.load_csv_dataset(database_path)
# checks
read_csv_patch.assert_called_once_with(database_path)
# if below assertion `np.testing.assert_array_equal` is True,
# it will return None, otherwise, if False, triggers an error
self.assertIsNone(np.testing.assert_array_equal(data.values,
dummy_data.values))
@patch('tinydb.table.Table.insert')
@patch('fedbiomed.node.dataset_manager.DatasetManager.load_default_database')
@patch('os.path.isdir')
def test_dataset_manager_15_add_database_default_dataset(self,
os_listdir_patch,
datasetmanager_load_default_dataset_patch,
insert_table_patch):
"""
Tests `add_database` method, where one is submitting a default dataset
"""
# unit test parameters
fake_dataset_shape = copy.deepcopy(self.fake_dataset_shape)
fake_dataset_shape = list(fake_dataset_shape)
fake_dataset_path = '/path/to/some/dataset'
fake_dataset_id = 'dataset_id_12234'
fake_dataset_name = 'test'
# patchers
os_listdir_patch.return_value = True
datasetmanager_load_default_dataset_patch.return_value = fake_dataset_shape
insert_table_patch.return_value = None
# action
dataset_id = self.dataset_manager.add_database(name=fake_dataset_name,
data_type='default',
tags=['unit', 'test'],
description='some description',
path= fake_dataset_path,
dataset_id=fake_dataset_id
)
# checks
self.assertEqual(dataset_id, fake_dataset_id)
datasetmanager_load_default_dataset_patch.assert_called_once_with(fake_dataset_name,
fake_dataset_path)
def test_dataset_manager_16_add_database_real_csv_examples_based(self):
"""
Test add_database method for loading real csv datasets
"""
fake_dataset_id = 'dataset_id_1232345'
# Load data with header example
dataset_id = self.dataset_manager.add_database(name='test',
tags=['titi'],
data_type='csv',
description='description',
path=os.path.join(self.testdir,
"csv",
"tata-header.csv"
),
dataset_id=fake_dataset_id
)
self.assertEqual(dataset_id, fake_dataset_id)
# Should raise error due to same tag
with self.assertRaises(Exception):
self.dataset_manager.add_database(name='test',
tags=['titi'],
data_type='csv',
description='description',
path=os.path.join(self.testdir,
"csv",
"tata-header.csv"
)
)
# Load data with normal different types
self.dataset_manager.add_database(name='test',
tags=['tata'],
data_type='csv',
description='description',
path=os.path.join( self.testdir,
"csv",
"titi-normal.csv"
)
)
# Should raise error due to broken csv
with self.assertRaises(Exception):
self.dataset_manager.add_database(name='test',
tags=['tutu'],
data_type='csv',
description='description',
path=os.path.join(self.testdir,
"csv",
"toto-error.csv"
)
)
# should raise n error because it is not a csv file (but data_format has been
# passed as a 'csv' file)
with self.assertRaises(AssertionError):
dataset_id = self.dataset_manager.add_database(name='test',
tags=['titi-other'],
data_type='csv',
description='description',
path=os.path.join(self.testdir,
"images"
)
)
def test_dataset_manager_17_add_database_wrong_datatype(self):
"""
Tests if NotImplementedError is raised when specifying
an unknown data type in add_database method
"""
with self.assertRaises(NotImplementedError):
self.dataset_manager.add_database(name='test',
data_type='unknwon format',
tags=['test'],
description='this is a test',
path='/a/path/to/some/data')
@patch('uuid.uuid4')
def test_dataset_manager_18_add_database_real_images_example_based(self, uuid_patch):
"""
Test dataset_manager method for loading real images datasets
"""
# patchers:
uuid_patch.return_value = FakeUuid()
# Load data with header example
dataset_id = self.dataset_manager.add_database(name='test',
tags=['titi-tags'],
data_type='images',
description='description',
path=os.path.join(self.testdir,
"images"
)
)
# check if dataset_id is correct when none is passed as argument
self.assertEqual('dataset_' + str(FakeUuid.VALUE), dataset_id)
# Should raise error due to same tag
with self.assertRaises(Exception):
self.dataset_manager.add_database(name='test',
tags=['titi-tags'],
data_type='images',
description='description',
path=os.path.join(self.testdir,
"images"
)
)
# should raise error because a csv dataset is loaded as image
with self.assertRaises(AssertionError):
self.dataset_manager.add_database(name='test',
tags=['titi-unique'],
data_type='images',
description='description',
path=os.path.join(self.testdir,
"csv",
"tata-header.csv"
),
)
@patch('tinydb.table.Table.remove')
@patch('fedbiomed.node.dataset_manager.DatasetManager.search_by_tags')
def test_dataset_manager_19_remove_database(self,
search_by_tags_patch,
db_remove_patch):
"""
Tests `remove_database` method by simulating the removal of a database
through its tags
"""
# arguments
doc1 = MagicMock(doc_id=1) # adding the attribute `doc_id` to doc
# (usually, datasets are added with an integer from 1 to the number of datasets
# contained in the database)
dataset_tags = ['some', 'tags']
search_result = [doc1]
def db_remove_side_effect(doc_ids: List[int]):
"""
Removes from `fake_database` global variable (that
mimics a real database) entries listed in doc_ids
Args:
doc_ids (List[int]): list of doc ids
"""
for doc_id in doc_ids:
self.fake_database.pop(str(doc_id))
# patchers
search_by_tags_patch.return_value = search_result
db_remove_patch.side_effect = db_remove_side_effect
# action
self.dataset_manager.remove_database(dataset_tags)
# checks
search_by_tags_patch.assert_called_once_with(dataset_tags)
db_remove_patch.assert_called_once_with(doc_ids=[1])
self.assertFalse(self.fake_database.get('1', False))
@patch('fedbiomed.node.dataset_manager.DatasetManager.search_conflicting_tags')
@patch('tinydb.table.Table.update')
def test_dataset_manager_20_modify_database_info(self,
tinydb_update_patch,
conflicting_tags_patch):
"""
Tests modify_database_info (normal case scenario),
where one replaces an existing dataset by another one
"""
def tinydb_update_side_effect(new_dataset: dict, existing_dataset):
"""
side effect function that mimics the update of the database
`fake_database`
Args:
new_dataset (dict): the new dataset to update
existing_dataset unused, but is a QueryInstance/QueryImpl
"""
fake_database['2'] = new_dataset
def conflicting_tags_side_effect(tags):
if all(t in fake_database.get('2')['tags'] for t in tags):
return [{'dataset_id': dataset_id}]
else:
return []
tinydb_update_patch.side_effect = tinydb_update_side_effect
conflicting_tags_patch.side_effect = conflicting_tags_side_effect
new_dataset_list = [
{
"name": "anther_test",
"data_type": "csv",
"tags": [ "other_tags"],
"description": "another_description",
"shape": [2000, 2],
"path": "/path/to/my/other/data",
"dataset_id": "dataset_9876",
"dtypes": ["int64", "float64"]
},
{
"tags": self.fake_database['2']['tags']
},
{
"tags": self.fake_database['1']['tags'][:-1] + ['yet another tag']
},
]
for new_dataset in new_dataset_list:
# defining a fake database
fake_database = copy.deepcopy(self.fake_database)
dataset_id = fake_database.get('2')['dataset_id']
# action
self.dataset_manager.modify_database_info(dataset_id, new_dataset)
# checks
# check that correct calls are made
tinydb_update_patch.assert_called_once_with(new_dataset,
Query().dataset_id == dataset_id)
# check database status after updating
# first entry in database should be left unchanged ...
self.assertEqual(fake_database.get('1'), self.fake_database.get('1'))
# ... whereas second entry should be updated with variable `new_dataset`
self.assertNotEqual(fake_database.get('2'), self.fake_database.get('2'))
self.assertEqual(fake_database.get('2'), new_dataset)
tinydb_update_patch.reset_mock()
@patch('fedbiomed.node.dataset_manager.DatasetManager.search_conflicting_tags')
def test_dataset_manager_20_modify_database_info_errpr(self,
conflicting_tags_patch):
"""
Tests modify_database_info (error case scenario),
where one replaces an existing dataset by another one
"""
def conflicting_tags_side_effect(tags):
return [{'dataset_id': 'one dataset is conflicting', 'name': 'fake dataset with conflicting tags'}]
conflicting_tags_patch.side_effect = conflicting_tags_side_effect
new_dataset_list = [
{
"name": "anther_test",
"data_type": "csv",
"tags": [ "other_tags"],
"description": "another_description",
"shape": [2000, 2],
"path": "/path/to/my/other/data",
"dataset_id": "dataset_9876",
"dtypes": ["int64", "float64"]
},
{
"tags": self.fake_database['2']['tags']
},
{
"tags": self.fake_database['1']['tags'][:-1] + ['yet another tag']
},
]
for new_dataset in new_dataset_list:
# defining a fake database
fake_database = copy.deepcopy(self.fake_database)
dataset_id = fake_database.get('2')['dataset_id']
# action + check
with self.assertRaises(FedbiomedDatasetManagerError):
self.dataset_manager.modify_database_info(dataset_id, new_dataset)
@patch('tinydb.table.Table.all')
def test_dataset_manager_22_list_my_data(self,
query_all_patch):
"""
Checks `list_my_data` method in the normal case scenario
"""
# arguments
# `table_all_query` mimics the result of a
# query `Table.all`
table_all_query = [{"name": "MNIST",
"data_type": "default",
"tags": ["#MNIST", "#dataset"],
"description": "MNIST database",
"shape": [60000, 1, 28, 28],
"path": "/path/to/MNIST",
"dataset_id": "dataset_1234",
"dtypes": []},
{"name": "test",
"data_type": "csv",
"tags": ["some", "tags"],
"description": "test",
"shape": [1000, 2],
"path": "/path/to/my/data",
"dataset_id": "dataset_4567",
"dtypes": ["float64", "int64"]}
]
# patchers
query_all_patch.return_value = table_all_query
# action
all_data = self.dataset_manager.list_my_data(True)
# checks
query_all_patch.assert_called_once()
# check that none of the database contained on the node
# doesnot contain `dtype`entry
self.assertNotIn('dtypes', all_data[0].keys())
self.assertNotIn('dtypes', all_data[1].keys())
@patch('fedbiomed.node.dataset_manager.DatasetManager.load_default_database')
def test_dataset_manager_23_load_as_dataloader_default(self,
load_default_database_patch):
"""
Tests `load_as_dataloader` method where the input
dataset is the default dataset
"""
# arguments
# first entry in fake dataset is a MNIST default dataset
fake_default_dataset = self.fake_database['1']
# patchers
load_default_database_patch.return_value = fake_default_dataset
# action
res = self.dataset_manager.load_as_dataloader(fake_default_dataset)
# checks
load_default_database_patch.assert_called_once_with(
name=fake_default_dataset.get('name'),
path=fake_default_dataset.get('path'),
as_dataset=True
)
self.assertEqual(res['name'], fake_default_dataset['name'])
self.assertEqual(res['dtypes'], fake_default_dataset['dtypes'])
self.assertEqual(res['tags'], fake_default_dataset['tags'])
self.assertEqual(res['path'], fake_default_dataset['path'])
@patch('fedbiomed.node.dataset_manager.DatasetManager.load_images_dataset')
def test_dataset_manager_24_load_as_dataloader_images(self, load_images_dataset_patch):
"""
Tests `load_as_dataloader` method where the input
dataset is a images dataset
"""
# arguments
fake_dataset = {"name": "test",
"data_type": "images",
"tags": ["some", "tags"],
"description": "test",
"shape": [1000, 2],
"path": "/path/to/my/data",
"dataset_id": "dataset_4567"}
# patchers
load_images_dataset_patch.return_value = self.fake_dataset
# action
res = self.dataset_manager.load_as_dataloader(fake_dataset)
# checks
load_images_dataset_patch.assert_called_once_with(folder_path=fake_dataset['path'],
as_dataset=True)
self.assertEqual(len(res), self.fake_dataset_shape[0])
self.assertIsInstance(res, Dataset)
@patch('fedbiomed.node.dataset_manager.DatasetManager.read_csv')
@patch('os.path.isfile')
@patch('fedbiomed.node.dataset_manager.DatasetManager.search_by_tags')
def test_dataset_manager_25_load_data_file(self,
search_by_tags_patch,
os_isfile_patch,
read_csv_patch
):
"""
Tests `load_data` method where a file is loaded (either a pandas
dataframe, numpy array, or torch tensor)
"""
# arguments
tags = ['some', 'tags']
search_by_tags_query = {'dataset_id': 'datset_id_1234',
'path': 'path/to/my/dataset',
'data_type': 'csv'}
# arguments: generating random data for third test
pandas_dataset_test_3 = pd.DataFrame(np.random.rand(100, 10))
# patchers
search_by_tags_patch.return_value = [search_by_tags_query]
os_isfile_patch.return_value = True
pandas_dataset = pd.DataFrame(self.dummy_data)
read_csv_patch.return_value = pandas_dataset
# action: first test with mode = 'pandas'
pandas_df = self.dataset_manager.load_data(tags, mode = 'pandas')
# first test checks
search_by_tags_patch.assert_called_once_with(tags)
# nota: `np.testing.assert_array_equal` returns None when
# test passed
self.assertIsNone(
np.testing.assert_array_equal(pandas_df.values, pandas_dataset.values)
)
# resetting Mocks for second test
search_by_tags_patch.reset_mock()
search_by_tags_patch.return_value = [search_by_tags_query]
read_csv_patch.return_value = pandas_dataset.drop(columns='chars')
# action: second test with mode = 'numpy'
np_array = self.dataset_manager.load_data(tags, mode = 'numpy')
# second test checks
search_by_tags_patch.assert_called_once_with(tags)
self.assertIsNone(
np.testing.assert_array_equal(np_array,
pandas_dataset.drop(columns='chars').values)
)
# resetting Mocks for third test
search_by_tags_patch.reset_mock()
search_by_tags_patch.return_value = [search_by_tags_query]
read_csv_patch.return_value = pd.DataFrame(pandas_dataset_test_3)
# action: third test with mode = 'torch_tensor'
torch_tensor = self.dataset_manager.load_data(tags, mode = 'torch_tensor')
# third test checks
search_by_tags_patch.assert_called_once_with(tags)
self.assertIsNone(
np.testing.assert_array_equal(torch_tensor,
pandas_dataset_test_3.values)
)
@patch('fedbiomed.node.dataset_manager.DatasetManager.load_as_dataloader')
@patch('os.path.isdir')
@patch('os.path.isfile')
@patch('fedbiomed.node.dataset_manager.DatasetManager.search_by_tags')
def test_dataset_manager_26_load_data_folder(self,
search_by_tags_patch,
os_isfile_patch,
os_isdir_patch,
load_as_dataloader_patch):
"""
Tests `load_data` method, in the cae where a folder is loaded
"""
# arguments
tags = ['some', 'tags']
search_by_tags_query = {'dataset_id': 'datset_id_1234',
'path': 'path/to/my/folder',
'data_type': 'images'}
# patches
search_by_tags_patch.return_value = [search_by_tags_query]
# mimicking behaviour where a folder has been found through search query
os_isfile_patch.return_value = False
os_isdir_patch.return_value = True
load_as_dataloader_patch.return_value = self.fake_dataset
# action: Test 1, loading with argument 'mode' = 'torch_dataset'
torch_dataset = self.dataset_manager.load_data(tags, mode= 'torcH_dataset')
# checks
search_by_tags_patch.assert_called_once_with(tags)
load_as_dataloader_patch.assert_called_once_with(search_by_tags_query)
self.assertIsInstance(torch_dataset, Dataset)
self.assertEqual(len(torch_dataset), self.fake_dataset_shape[0])
# In this last part of the test, we are going to check if exceptions
# (for the other modes) are raised
with self.assertRaises(NotImplementedError):
self.dataset_manager.load_data(tags, mode='torch_tensor')
with self.assertRaises(NotImplementedError):
self.dataset_manager.load_data(tags, mode='numpy')
with self.assertRaises(NotImplementedError):
self.dataset_manager.load_data(tags, mode='pandas')
def test_dataset_manager_27_load_data_exception(self):
"""
Tests if an exception is raised when passing an
unknown mode to `load_data` method
"""
# arguments
tags = ['some', 'tags']
# action and check
with self.assertRaises(NotImplementedError):
self.dataset_manager.load_data(tags, mode='unknown_mode')
def test_dataset_manager_28_load_existing_mednist_dataset(self):
"""
Tests case where one is loading mednist dataset without downloading it
"""
def _create_fake_mednist_dataset(self):
'''
Create fake mednist dataset and save the images in tempdir
Dataset folders structure:
|- class_0
| |- image_0.jpeg
|- class_1
| |- image_0.jpeg
...
|_ class_n
|- image_0.jpeg
'''
mednist_path = os.path.join(self.tempdir, 'MedNIST')
os.makedirs(mednist_path)
fake_img_data = np.random.randint(0,255,(64, 64))
img = Image.fromarray(fake_img_data, 'L')
n_classes = 6
# one image per class
for class_i in range(n_classes):
class_path = os.path.join(mednist_path, f'class_{class_i}')
os.makedirs(class_path)
img_path = os.path.join(class_path, 'image_0.jpeg')
img.save(img_path)
return datasets.ImageFolder(mednist_path, transform=transforms.ToTensor())
fake_dataset = _create_fake_mednist_dataset(self)
# action
# Test the load mednist method with input as_dataset False
res_dataset_shape = self.dataset_manager.load_mednist_database(self.tempdir,
as_dataset=False)
# checks
self.assertListEqual(res_dataset_shape, [6, 3, 64, 64])
# Test the load mednist method with input as_dataset True
res_dataset = self.dataset_manager.load_mednist_database(self.tempdir,
as_dataset=True)
for i in range(len(fake_dataset)):
with self.subTest(i=i):
self.assertTrue(torch.equal(res_dataset[i][0], fake_dataset[i][0]))
# check that assigned classes are correct
self.assertEqual(res_dataset[i][1], fake_dataset[i][1])
@patch('fedbiomed.node.dataset_manager.urlretrieve')
def test_dataset_manager_29_download_extrat_mednist(self,
urlretrieve_patch):
"""
Tests the correct process of data download and extraction
in order to make MedNIST dataset (retrieved from url limnk)
"""
ARCHIVE_PATH = os.path.join(self.testdir, "images/MedNIST_test.tar.gz")
def urlretieve_side_effect(url, path):
"""Mimics download of dataset by coping & pasting
dataset archive in the good directory
"""
# copying & loading archive into temporary file
path = pathlib.Path(path).parent.absolute()
shutil.copy2(ARCHIVE_PATH, path)
os.rename(os.path.join(path, "MedNIST_test.tar.gz"),
os.path.join(path, "MedNIST.tar.gz"))