forked from fedbiomed/fedbiomed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_generic_optimizer.py
1115 lines (901 loc) · 52.5 KB
/
test_generic_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import random
from typing import Any, Dict, List, Tuple, Union
import unittest
from unittest.mock import MagicMock, patch
import numpy as np
import torch.nn as nn
import torch
from torch.optim.lr_scheduler import LambdaLR
from sklearn.base import BaseEstimator
from sklearn.linear_model import SGDClassifier, SGDRegressor
import declearn
from declearn.optimizer import Optimizer as DecOptimizer
from declearn.optimizer.modules import (
ScaffoldServerModule, ScaffoldClientModule, GaussianNoiseModule,
YogiMomentumModule, L2Clipping, AdaGradModule, YogiModule)
from declearn.optimizer.regularizers import FedProxRegularizer, LassoRegularizer, RidgeRegularizer
from declearn.model.torch import TorchVector
from declearn.model.sklearn import NumpyVector
from fedbiomed.common.constants import TrainingPlans
from fedbiomed.common.exceptions import FedbiomedOptimizerError
from fedbiomed.common.optimizers.generic_optimizers import NativeSkLearnOptimizer, NativeTorchOptimizer, DeclearnOptimizer, OptimizerBuilder
from fedbiomed.common.optimizers.optimizer import Optimizer as FedOptimizer
from fedbiomed.common.models import SkLearnModel, Model, TorchModel, BaseSkLearnModel
class TestDeclearnOptimizer(unittest.TestCase):
def setUp(self) -> None:
self._optim_wrapper = DeclearnOptimizer
self._torch_model = nn.Linear(4,2)
self._zero_model = copy.deepcopy(self._torch_model)
# setting all coefficients of `zero_model` to 0
for p in self._zero_model.parameters():
p.data.fill_(0)
self._sklearn_model_wrappers = (SkLearnModel(SGDClassifier),
SkLearnModel(SGDRegressor))
# It could be nice to have several models in the tuple `torch_model_wrappers`
self._torch_model_wrappers = (TorchModel(self._torch_model),)
self._torch_zero_model_wrappers = (TorchModel(self._zero_model),)
self.modules = [
ScaffoldServerModule(),
GaussianNoiseModule(),
YogiMomentumModule(),
L2Clipping(),
AdaGradModule(),
YogiModule()]
self.regularizers = [FedProxRegularizer(), LassoRegularizer(), RidgeRegularizer()]
def tearDown(self) -> None:
return super().tearDown()
def create_random_declearn_optimizer(self,
learning_rate: float,
w_decay: float,
forces_mod_and_reg: bool = False) -> Tuple[DecOptimizer,
List[declearn.optimizer.modules.OptiModule],
List[declearn.optimizer.regularizers.Regularizer]]:
"""Creates random declearn optimizers, by picking random declearn `OptiModules` optimizers and regularizers,
from self.modules and self.regularizers
Args:
learning_rate: learning rate passed into DecLearn optimizer
w_decay: weight decay passed into DecLearn optimizer
forces_mod_and_reg (bool, optional): forces declearn optimizer to have at least one OptiModule and Regularizer.
Defaults to False.
Returns:
tuple of size 3 containing:
- the declearn optimizer
- the list of randomized OptiModules
- the list of randomized Regularizers
"""
min_modules = 0 if not forces_mod_and_reg else 1
selected_modules = random.sample(self.modules, random.randint(min_modules, len(self.modules)))
selected_reg = random.sample(self.regularizers, random.randint(min_modules, len(self.regularizers)))
optim = FedOptimizer(lr=learning_rate,
decay=w_decay,
modules=selected_modules,
regularizers=selected_reg)
return optim, selected_modules, selected_reg
def serializer(self,
msg: Dict[str, Dict[str, Dict[str, Union[NumpyVector, TorchVector]]]]) -> Dict[str, Dict[str, Dict[str,Dict[str, Any]]]]:
"""Mimics the serialization module: converts nested declearn vector in nested dictionaries"""
types = (NumpyVector, TorchVector)
msg = {k: v.coefs if isinstance(v, types) else self.serializer(v) for k, v in msg.items()}
return msg
def deserializer(self, msg):
"""Mimics the deserialization module: converts model parameters into declearn Vector objects"""
types = (np.ndarray, torch.Tensor)
msg = {k: declearn.model.api.Vector.build(v) if any([isinstance(q, types) for p, q in v.items()]) else self.deserializer(v) for k, v in msg.items()}
return msg
def perform_sklearn_training_node_side(self, node_id: str,
node_model: SkLearnModel,
node_optim_w: DeclearnOptimizer,
global_model_weights: Dict,
aux_var: Dict,
data: np.ndarray,
target: np.ndarray) -> Dict:
"""Performs a optimizer step on node side for sklearn models, given a dictionary
of auxiliary variables, when using a Declearn Optimizer. Useful for testing the
correct setting of auxiliary variables.
Args:
node_id: id of the node set for the test
node_model: node model
node_optim_w: declearn optimizer warpper for Node
global_model_weights: global model weights, obtained after aggregation (should be sent from Researcher to Node)
aux_var: auxiliary variables, in a dictionary. All elements of the aux_var are human readable.
data: data used to train the node model.
target: target data used to train node model
Returns:
Dict: auxiliary variables for node to be sent to researcher.
"""
if aux_var:
aux_var = self.deserializer(aux_var)
aux_var = {k: v[node_id] for k, v in aux_var.items() if v.get(node_id)}
node_optim_w.set_aux(copy.deepcopy(aux_var))
node_model.set_weights(global_model_weights)
# performs (or simulates) a training on node side
with node_optim_w.optimizer_processing():
# training process
node_optim_w.init_training()
node_model.train(data, target, stdout=[])
node_optim_w.step()
# collect auxiliary variables
aux_var = node_optim_w.get_aux()
# serialization: convert everything from declearn Vector to dictionaries
aux_var = self.serializer(aux_var)
aux_var = {'scaffold': {node_id: aux_var['scaffold']}}
return aux_var
def perform_torch_training_node_side(self, node_id: str,
node_model: TorchModel,
node_optim_w: DeclearnOptimizer,
global_model_weights: Dict,
aux_var: Dict,
data: torch.Tensor,
targets: torch.Tensor,
loss_func: torch.nn) -> Dict:
"""Performs a optimizer step on node side for Torch models, given a dictionary
of auxiliary variables, when using a Declearn Optimizer. Useful for testing
the correct setting of auxiliary variables.
Args:
node_id: node_id
node_model: torch node model that will be optimized
node_optim_w: declearn optimizer wrapper for Node
global_model_weights: aggregated model parameters (sent form Researcher to Nodes)
aux_var: auxiliary variables sent from Researcher to Nodes
data: data to be used for training the model
targets: data to be used for training the model
loss_func: loss function to be used for optimization.
Returns:
Dict: auxiliary variables to be sent back from Node to Researcher
"""
if aux_var:
aux_var = self.deserializer(aux_var)
aux_var = {k: v[node_id] for k, v in aux_var.items() if v.get(node_id)}
node_optim_w.set_aux(copy.deepcopy(aux_var))
node_model.set_weights(global_model_weights)
# performs (or simulates) a training on node side
node_optim_w.init_training()
node_optim_w.zero_grad()
output = node_model.model.forward(data)
loss = loss_func(output, targets)
loss.backward()
node_optim_w.step()
# collect auxiliary variables
aux_var = node_optim_w.get_aux()
# serialization: convert everything from declearn Vector to dictionaries
aux_var = self.serializer(aux_var)
aux_var = {'scaffold': {node_id: aux_var['scaffold']}}
return aux_var
def perform_training_researcher_side(self,
optim_w: DeclearnOptimizer,
global_model_weights: Dict,
aggr_model_weights: Dict,
aux_var: Dict) -> Dict:
"""Performs/simulates an optimizer update on Researcher side, given auxiliary variables.
Args:
optim_w: optimizer wrapper for Researcher
global_model_weights: dictionary that contains all Nodes models that need to be aggregated
aggr_model_weights: previous aggregated model weights. Graidents will be computed a follows:
aggr_model_weights - global_model_weights
aux_var: auxialiary variables sent by the Nodes to the Researcher
Returns:
Dict: auxiliary variables to be sent back from Researcher to Nodes
"""
# serialization: convert everything from dictionaries to declearn Vector
# TODO: use serializer once it has been merged
aux_var = self.deserializer(aux_var)
optim_w.set_aux(aux_var)
# performs an update on researcher side
global_model_weights = declearn.model.api.Vector.build(global_model_weights)
updates = declearn.model.api.Vector.build(aggr_model_weights) - global_model_weights
optim_w.optimizer.step(updates, global_model_weights)
# retrieves researcher model parameters and aux_var
aux_var = optim_w.get_aux()
aux_var = self.serializer(aux_var)
return aux_var
def compute_delta_from_nodes_state(self,
aux_var: Dict,
global_model_weigths: Dict) -> Dict:
"""Used for testing delta scaffold computation for scaffold tests (auxiliary variable to be sent
from Node to Researcher).
Args:
aux_var: auxiliary variables sent from Nodes to Researcher, that should contain `scaffold` entry,
containing a `state` entry
global_model_weights: dictionary that contains model global weights. Used only to get the model layers.
Returns:
Dict: dictionary containing delats for each Node (mapping node-id to its delta)
"""
node_ids = list(aux_var['scaffold'])
deltas = {node_id: {} for node_id in node_ids}
for layer in global_model_weigths:
sum_state = sum(aux_var['scaffold'][k]['state'][layer] for k in aux_var['scaffold'] )
sum_state /= len(aux_var['scaffold'])
delta = {}
for node_id in node_ids:
delta[layer] = aux_var['scaffold'][node_id]['state'][layer] - sum_state
deltas[node_id].update(delta)
return deltas
# -------- TESTS ------------------------------------
def test_declearnoptimizer_01_init_invalid_model_arguments(self):
correct_optimizers = (MagicMock(spec=FedOptimizer),
DecOptimizer(lrate=.1)
)
incorrect_type_models = (None,
True,
np.array([1, 2, 3]),
MagicMock(spec=BaseEstimator),
nn.Module())
for model in incorrect_type_models:
for optimizer in correct_optimizers:
with self.assertRaises(FedbiomedOptimizerError):
self._optim_wrapper(model, optimizer)
def test_declearnoptimizer_02_init_invalid_optimizer_arguments(self):
incorrect_optimizers = (None,
nn.Module(),
torch.optim.SGD(self._torch_model.parameters(), .01))
correct_models = (
MagicMock(spec=Model),
MagicMock(spec=SkLearnModel)
)
for model in correct_models:
for optim in incorrect_optimizers:
with self.assertRaises(FedbiomedOptimizerError):
self._optim_wrapper(model, optim)
def test_declearnoptimizer_03_step_method_1_TorchOptimizer(self):
optim = FedOptimizer(lr=1)
# initilise optimizer wrappers
initialized_torch_optim_wrappers = (
DeclearnOptimizer(copy.deepcopy(model), optim) for model in self._torch_zero_model_wrappers
)
fake_retrieved_grads = [
{name: param for (name, param) in model.model.state_dict().items() }
for model in self._torch_zero_model_wrappers
]
fake_retrieved_grads = [TorchVector(grads) + 1 for grads in fake_retrieved_grads]
# operation: do a SGD step with all gradients equal 1 and learning rate equals 1
for torch_optim_wrapper, zero_model, grads in zip(initialized_torch_optim_wrappers,
self._torch_zero_model_wrappers,
fake_retrieved_grads):
with patch.object(TorchModel, 'get_gradients') as get_gradients_patch:
get_gradients_patch.return_value = grads.coefs
torch_optim_wrapper.step()
get_gradients_patch.assert_called_once()
for (l, val), (l_ref, val_ref) in zip(zero_model.get_weights().items(), torch_optim_wrapper._model.get_weights().items()):
self.assertTrue(torch.isclose(val - 1, val_ref).all())
def test_declearnoptimizer_03_step_method_2_SklearnOptimizer(self):
optim = FedOptimizer(lr=1)
num_features = 4
num_classes = 2
# zero sklearn model weights
for model in self._sklearn_model_wrappers:
model.set_init_params({'n_features': num_features, 'n_classes': num_classes})
model.model.eta0 = .1 # set learning rate to make sure it is different from 0
initialized_sklearn_optim = (DeclearnOptimizer(copy.deepcopy(model), optim) for model in self._sklearn_model_wrappers)
fake_retrieved_grads = [
copy.deepcopy(model.get_weights()) for model in self._sklearn_model_wrappers
]
fake_retrieved_grads = [NumpyVector(grads) + 1 for grads in fake_retrieved_grads]
# operation: do a SGD step with all gradients equal 1 and learning rate equals 1
for sklearn_optim_wrapper, zero_model, grads in zip(initialized_sklearn_optim,
self._sklearn_model_wrappers,
fake_retrieved_grads):
with patch.object(BaseSkLearnModel, 'get_gradients') as get_gradients_patch:
get_gradients_patch.return_value = grads.coefs
sklearn_optim_wrapper.step()
get_gradients_patch.assert_called()
for (l, val), (l_ref, val_ref) in zip(zero_model.get_weights().items(),
sklearn_optim_wrapper._model.get_weights().items()):
self.assertTrue(np.all(val - 1 == val_ref)) # NOTA: all val values are equal 0
def test_declearnoptimizer_05_aux_variables(self):
learning_rate = .12345
for model_wrappers in (self._torch_model_wrappers, self._sklearn_model_wrappers):
for model in model_wrappers:
optim = FedOptimizer(lr=learning_rate, modules = [ScaffoldServerModule()])
optim_wrapper = DeclearnOptimizer(model, optim)
empty_aux = {}
optim_wrapper.set_aux(empty_aux)
self.assertDictEqual(optim_wrapper.get_aux(), {})
aux = { 'scaffold':
{
'node-1': {'state': 1.},
'node-2': {'state': 2.},
'node-3': {'state': 3.}
}
}
optim_wrapper.set_aux(aux)
collected_aux_vars = optim_wrapper.get_aux()
expected_aux_vars = {
'scaffold':
{
'node-1': {'delta': -1.},
'node-2': {'delta': 0.},
'node-3': {'delta': 1.}
}
}
# computation performed to get deltas: node_state - sum(node_states) / nb_nodes_involved
self.assertDictEqual(collected_aux_vars, expected_aux_vars)
optim = FedOptimizer(lr=learning_rate, modules = [ScaffoldClientModule()])
optim_wrapper = DeclearnOptimizer(model, optim)
aux = {'scaffold': {'delta': 1.}}
optim_wrapper.set_aux(aux)
expected_aux = {'scaffold': {'state': 0.}}
collected_aux = optim_wrapper.get_aux()
self.assertDictEqual(expected_aux, collected_aux)
def test_declearnoptimizer_06_states(self):
def check_state(state: Dict[str, Any], learning_rate: float, w_decay: float, modules: List, regs: List, model):
self.assertEqual(state['config']['lrate'], learning_rate)
self.assertEqual(state['config']['w_decay'], w_decay)
self.assertListEqual(state['config']['regularizers'], [(reg.name, reg.get_config()) for reg in regs])
self.assertListEqual(state['config']['modules'], [(mod.name , mod.get_config()) for mod in modules])
new_optim_wrapper = DeclearnOptimizer.load_state(model, state)
self.assertDictEqual(new_optim_wrapper.save_state(), state)
self.assertIsInstance(new_optim_wrapper.optimizer, FedOptimizer)
learning_rate = .12345
w_decay = .54321
optim = FedOptimizer(lr=learning_rate, decay=w_decay)
for model_wrappers in (self._torch_model_wrappers, self._sklearn_model_wrappers):
for model in model_wrappers:
optim_wrapper = DeclearnOptimizer(model, optim)
state = optim_wrapper.save_state()
check_state(state, learning_rate, w_decay, [], [], model)
nb_tests = 10 # number of time the following test will be executed
for model_wrappers in (self._torch_model_wrappers, self._sklearn_model_wrappers):
for model in model_wrappers:
for _ in range(nb_tests):
# test DeclearnOptimizer with random modules and regularizers
optim, selected_modules, selected_reg = self.create_random_declearn_optimizer(learning_rate, w_decay)
optim_wrapper = DeclearnOptimizer(model, optim)
state = optim_wrapper.save_state()
check_state(state, learning_rate, w_decay, selected_modules, selected_reg, model)
def test_declearnoptimizer_05_declearn_optimizers_1_sklearnModel(self):
# performs a number of optimization steps with randomly created optimizers
# FIXME: nothing is being asserted here...
nb_tests = 10 # number of time the following test will be executed
learning_rate = .12345
w_decay = .54321
data = np.array([[1, 1, 1, 1,],
[1, 0, 1, 0],
[1, 1, 1, 1]])
targets = np.array([[1], [0], [1], [1]])
optim, modules , regs = self.create_random_declearn_optimizer(learning_rate, w_decay)
for _ in range(nb_tests):
for model in self._sklearn_model_wrappers:
optim_w = DeclearnOptimizer(model, optim)
model.set_init_params({'n_features': 4, 'n_classes': 2})
with optim_w.optimizer_processing():
optim_w.init_training()
model.train(data, targets)
optim_w.step()
def test_declearnoptimizer_05_declearn_optimizers_2_torchmodel(self):
# performs a number of optimization steps with randomly created optimizers
# FIXME: nothing is being asserted here...
data = torch.Tensor([[1,1,1,1],
[1,0,0,1]])
targets = torch.Tensor([[1, 1], [0, 1]])
learning_rate = .12345
w_decay = .54321
optim, modules , regs = self.create_random_declearn_optimizer(learning_rate, w_decay)
loss_func = torch.nn.MSELoss()
nb_tests = 10
for _ in range(nb_tests):
for model in self._torch_model_wrappers:
optim_w = DeclearnOptimizer(model, optim)
optim_w.init_training()
optim_w.zero_grad()
output = model.model.forward(data)
loss = loss_func(output, targets)
loss.backward()
optim_w.step()
def test_declearnoptimizer_06_declearn_scaffold_1_sklearnModel(self):
# FIXME: this test is more a funcitonal test and should belong to trainingplan tests
# test with one server and one node on a SklearnModel
# this test was made to simulate a training with node and researcher with optimizer sending auxiliary variables for scaffold
# in addition to model parameters
# it tests:
# - correct interfacing between Nodes auxiiliary variables and Researcher auxiliary variables
# - correct update of Node weights wrt deltas (auxiliary variable for scaffold sent to Nodes)
# - correct computation of Nodes states (auxiliary variable sent back to Researcher)
# - correct properties of Nodes deltas
data = np.array([[1, 1, 1, 1,],
[1, 0, 1, 0],
[1, 1, 1, 1]])
data2 = np.array([[1, 0, 1, 0],
[1, 1, 1, 1,],
[1, 1, 1, 1]])
targets = np.array([[1], [0], [1], [1]])
num_features = 4
num_classes = 2
# node_scenarios is a tuple containing for each test a dictionary specifying:
# - nodes_id (ie the simulated nodes taking part in the training)
# - data: dictionry that maps node_id to the dataset used for training
# - target: dictionary that map node_id to the target dataset used for training
# here we have one test scenario invoving only one node first, then another one involving 3 nodes
nodes_scenarios = ({'nodes': ('node-1',),
'data': {'node-1': data},
'target': {'node-1': targets}},
{'nodes': ('node-1', 'node-2', 'node-3',),
'data': {'node-1': data,
'node-2': data,
'node-3': data2},
'target': {'node-1':targets,
'node-2': targets,
'node-3': targets}},)
researcher_lr, node_lr = .03, .5
for nodes_scenario in nodes_scenarios:
for model in self._sklearn_model_wrappers:
researcher_optim = FedOptimizer(lr=researcher_lr, modules=[ScaffoldServerModule()])
# step 1: initializes and zeroes node model weights
# zero sklearn model weights
model.set_init_params({'n_features': num_features, 'n_classes': num_classes})
node_optims = {node_id: FedOptimizer(lr=node_lr, modules=[ScaffoldClientModule()]) for node_id in nodes_scenario['nodes']}
# step 2: sends auxiliary variables from researcher to nodes
researcher_sklearn_optim_wrapper = DeclearnOptimizer(model, researcher_optim)
node_models = {node_id: copy.deepcopy(model) for node_id in nodes_scenario['nodes']}
node_sklearn_optim_wrappers = {k: DeclearnOptimizer(node_models[k], node_optims[k]) for k in nodes_scenario['nodes']}
aux_var = researcher_sklearn_optim_wrapper.get_aux()
self.assertDictEqual(aux_var, {}) # test that aux_var are 0 for the first round
for _ in range(5): # simulates 5 rounds
# step 3: performs (or simulates) a training on node side
aux_var_collections = {}
for idx, node_id in enumerate(nodes_scenario['nodes']):
node_aux_var = self.perform_sklearn_training_node_side(node_id,
node_models[node_id],
node_sklearn_optim_wrappers[node_id],
model.get_weights(),
aux_var,
nodes_scenario['data'][node_id],
nodes_scenario['target'][node_id])
v = node_sklearn_optim_wrappers[node_id].optimizer._optimizer.modules[0].delta
for k, v in node_models[node_id].get_gradients().items():
# ------ CHECKS
# check that states equals to the gradients in the very specific setting where we are performing
# only one iteration over data (so step = 1 and there is no gradient accumulation)
self.assertTrue(np.array_equal(v, node_aux_var['scaffold'][node_id]['state'][k]))
# check weights are updated according to delta values
if aux_var:
self.assertTrue(np.array_equal((aux_var['scaffold'][node_id]['delta'][k] - v) * node_lr, node_models[node_id].get_weights()[k]))
if idx == 0:
aux_var_collections = {k: {} for k in node_aux_var}
for k in node_aux_var:
aux_var_collections[k].update(node_aux_var[k])
# step 4: perform an update on Researcher side
aux_var = self.perform_training_researcher_side(researcher_sklearn_optim_wrapper,
model.get_weights(), model.get_weights(), aux_var_collections)
# final checks
deltas = self.compute_delta_from_nodes_state(aux_var_collections, model.get_weights())
# final check 1. test that sum(delta_nodeid) = 0
for (k, v) in model.get_weights().items():
avg = np.zeros_like(v)
for node_id in nodes_scenario['nodes']:
avg += aux_var['scaffold'][node_id]['delta'][k]
self.assertTrue(np.isclose(avg, np.zeros_like(avg)).all())
# final check 2. test correct computation of deltas
for node_id in nodes_scenario['nodes']:
for (k, v) in model.get_weights().items():
self.assertTrue(np.array_equal(deltas[node_id][k], aux_var['scaffold'][node_id]['delta'][k]))
def test_declearnoptimizer_06_declearn_scaffold_2_torchModel(self):
# this test was made to simulate a training with node and researcher with optimizer sending auxiliary variables for scaffold
# in addition to model parameters
# it tests:
# - correct interfacing between Nodes auxiiliary variables and Researcher auxiliary variables
# - correct update of Node weights wrt deltas (auxiliary variable for scaffold sent to Nodes)
# - correct computation of Nodes states (auxiliary variable sent back to Researcher)
# - correct properties of Nodes deltas
researcher_lr, node_lr = .03, .5
data = torch.Tensor([[1, 1, 1 ,1],
[1, 0, 0, 1],
[1, 0, 0, 0],
[0, 0, 0, 0],
[1, 0, 0, 1]])
data2 = torch.Tensor([[1,1,1,1],
[1,1,0,1],
[1, 1, 0, 0],
[0, 0, 1, 0],
[1, 0, 0, 1]])
targets = torch.Tensor([[1, 1], [1, 0], [1,1], [0,0], [0,1]])
# node_scenarios is a tuple containing for each test a dictionary specifying:
# - nodes_id (ie the simulated nodes taking part in the training)
# - data: dictionry that maps node_id to the dataset used for training
# - target: dictionary that map node_id to the target dataset used for training
# here we have one test scenario invoving only one node first, then another one involving 3 nodes
nodes_scenarios = (
{
'nodes': ('node-1',),
'data': {'node-1': data},
'target': {'node-1': targets}
},
{
'nodes': ('node-1', 'node-2', 'node-3',),
'data':{
'node-1': data,
'node-2': data,
'node-3': data2
},
'target': {
'node-1': targets,
'node-2': targets,
'node-3': targets
}
}
)
loss_func = torch.nn.MSELoss()
for nodes_scenario in nodes_scenarios:
for model in self._torch_model_wrappers:
researcher_optim = FedOptimizer(lr=researcher_lr, modules=[ScaffoldServerModule()])
node_optims = {node_id: FedOptimizer(lr=node_lr, modules=[ScaffoldClientModule()]) for node_id in nodes_scenario['nodes']}
# step 2: sends auxiliary variables from researcher to nodes
researcher_torch_optim_wrapper = DeclearnOptimizer(model, researcher_optim)
node_models = {node_id: copy.deepcopy(model) for node_id in nodes_scenario['nodes']}
node_torch_optim_wrappers = {k: DeclearnOptimizer(node_models[k], node_optims[k]) for k in nodes_scenario['nodes']}
aux_var = researcher_torch_optim_wrapper.get_aux()
self.assertDictEqual(aux_var, {}) # test that aux_var are 0 for the first round
for _ in range(5): # simulates 5 rounds
# step 3: performs (or simulates) a training on node side
aux_var_collections = {}
for idx, node_id in enumerate(nodes_scenario['nodes']):
copy_model_w = copy.deepcopy(model.get_weights()) # we copy here model weights (for testing only)
node_aux_var = self.perform_torch_training_node_side(node_id,
node_models[node_id],
node_torch_optim_wrappers[node_id],
model.get_weights(),
aux_var,
nodes_scenario['data'][node_id],
nodes_scenario['target'][node_id],
loss_func)
v = node_torch_optim_wrappers[node_id].optimizer._optimizer.modules[0].delta
for k, v in node_models[node_id].get_gradients().items():
# ------ CHECKS
# check that states equals to the griadients in the very specific we are performing
# only one iteration over data (so step = 1 and there is no gradient accumulation)
self.assertTrue(torch.isclose(v, node_aux_var['scaffold'][node_id]['state'][k]).all())
# check weights are updated according to delta values
if aux_var:
self.assertTrue(torch.isclose(copy_model_w[k] - (v - aux_var['scaffold'][node_id]['delta'][k] ) * node_lr, node_models[node_id].get_weights()[k]).all())
if idx == 0:
aux_var_collections = {k: {} for k in node_aux_var}
for k in node_aux_var:
aux_var_collections[k].update(node_aux_var[k])
# step 4: perform a last update on Researcher side
aux_var = self.perform_training_researcher_side(researcher_torch_optim_wrapper,
model.get_weights(), model.get_weights(), aux_var_collections)
# final checks
deltas = self.compute_delta_from_nodes_state(aux_var_collections, model.get_weights())
# final check 1. test that sum(delta_nodeid) = 0
for (k, v) in model.get_weights().items():
zero_vector = torch.zeros(v.shape)
avg = copy.deepcopy(zero_vector)
for node_id in nodes_scenario['nodes']:
avg += aux_var['scaffold'][node_id]['delta'][k]
self.assertTrue(torch.isclose(avg, zero_vector, atol=1e-5).all())
# final check 2. test correct computation of deltas
for node_id in nodes_scenario['nodes']:
for (k, v) in model.get_weights().items():
self.assertTrue(torch.isclose(deltas[node_id][k], aux_var['scaffold'][node_id]['delta'][k]).all())
def test_declearnoptimizer_07_multiple_scaffold(self):
# the goal of this test is to check that user will get error if specifying non sensical
# Optimizer when passing both `ScaffoldServerModule()`and `ScaffoldClientModule()` modules
researcher_lr, node_lr = .03, .5
data = torch.Tensor([[1,1,1,1],
[1,0,0,1]])
targets = torch.Tensor([[1, 1]])
loss_func = torch.nn.MSELoss()
for model in self._torch_zero_model_wrappers:
incorrect_optim = FedOptimizer(lr=researcher_lr, modules=[ScaffoldServerModule(), ScaffoldClientModule()]) # Non sensical!!!
incorrect_optim_w = DeclearnOptimizer(model, incorrect_optim)
incorrect_optim_w.init_training()
incorrect_optim_w.zero_grad()
output = model.model.forward(data)
loss = loss_func(output, targets)
loss.backward()
incorrect_optim_w.step()
incorrect_state = incorrect_optim_w.get_aux()
optim = FedOptimizer(lr=node_lr, modules=[ScaffoldClientModule()])
correct_optim_w = DeclearnOptimizer(model, optim)
aux_var = {'scaffold': {'node-1': incorrect_state['scaffold']}}
with self.assertRaises(FedbiomedOptimizerError):
correct_optim_w.set_aux(aux_var)
class TestTorchBasedOptimizer(unittest.TestCase):
# make sure torch based optimizers does the same action on torch models - regardless of their nature
def setUp(self):
self._torch_model = (nn.Linear(4, 2),)
self._fed_models = (TorchModel(model) for model in self._torch_model)
self._zero_models = [copy.deepcopy(model) for model in self._torch_model]
for model in self._zero_models:
for p in model.parameters():
p.data.fill_(0)
def tearDown(self) -> None:
return super().tearDown()
def test_torchbasedoptimizer_01_zero_grad(self):
declearn_optim = FedOptimizer(lr=.1)
torch_optim_type = torch.optim.SGD
for model in self._fed_models:
# first check that element of model are non zeros
grads = model.get_gradients()
for l, val in grads.items():
self.assertFalse(torch.isclose(val, torch.zeros(val.shape)).all())
# initialisation of declearn optimizer wrapper
dec_model = copy.deepcopy(model)
declearn_optim_wrapper = DeclearnOptimizer(dec_model, declearn_optim)
declearn_optim_wrapper.zero_grad()
grads = dec_model.get_gradients()
for l, val in grads.items():
self.assertTrue(torch.isclose(val, torch.zeros(val.shape)).all())
# initialisation of native torch optimizer wrapper
torch_model = copy.deepcopy(model)
torch_optim = torch_optim_type(torch_model.model.parameters(), .1)
native_torch_optim_wrapper = NativeTorchOptimizer(torch_model, torch_optim)
native_torch_optim_wrapper.zero_grad()
grads = torch_model.get_gradients()
for l, val in grads.items():
self.assertTrue(torch.isclose(val, torch.zeros(val.shape)).all())
def test_torchbasedoptimizer_02_step(self):
# check that declearn and torch plain SGD optimization step give the same result
declearn_optim = FedOptimizer(lr=1)
torch_optim_type = torch.optim.SGD
data = torch.Tensor([[1,1,1,1]])
targets = torch.Tensor([[1, 1]])
loss_func = torch.nn.MSELoss()
for model in self._zero_models:
model = TorchModel(model)
# initialisation of declearn optimizer wrapper
declearn_optim_wrapper = DeclearnOptimizer(model, declearn_optim)
declearn_optim_wrapper.zero_grad()
output = declearn_optim_wrapper._model.model.forward(data)
loss = loss_func(output, targets)
loss.backward()
declearn_optim_wrapper.step()
# initialisation of native torch optimizer wrapper
torch_optim = torch_optim_type(model.model.parameters(), 1)
native_torch_optim_wrapper = NativeTorchOptimizer(model, torch_optim)
native_torch_optim_wrapper.zero_grad()
output = native_torch_optim_wrapper._model.model.forward(data)
loss = loss_func(output, targets)
loss.backward()
native_torch_optim_wrapper.step()
# checks
for (l, dec_optim_val), (l, torch_optim_val) in zip(declearn_optim_wrapper._model.get_weights().items(),
native_torch_optim_wrapper._model.get_weights().items()):
self.assertTrue(torch.isclose(dec_optim_val, torch_optim_val).all())
def test_torchbasedoptimizer_03_invalid_methods(self):
declearn_optim = FedOptimizer(lr=.1)
for model in self._fed_models:
# initialisation of declearn optimizer wrapper
declearn_optim_wrapper = DeclearnOptimizer(model, declearn_optim)
with self.assertRaises(FedbiomedOptimizerError):
with declearn_optim_wrapper.optimizer_processing():
pass
class TestSklearnBasedOptimizer(unittest.TestCase):
def setUp(self):
self._sklearn_model = (SkLearnModel(SGDClassifier),
SkLearnModel(SGDRegressor))
self.data = np.array([[1, 1, 1, 1,],
[1, 0,0, 1],
[1, 1, 1, 1],
[1, 1, 1, 0]])
self.targets = np.array([[1], [0], [1], [1]])
def tearDown(self):
pass
def test_sklearnbasedoptimizer_01_step(self):
# tests that a plain gradient descent performed by native sklearn optimizer and
# using declearn optimizer gives the same results
random_seed = 1234
learning_rate = .1234
for sk_model in self._sklearn_model:
# native sklearn
sk_model.set_params(random_state=random_seed,
eta0=learning_rate,
penalty=None,
learning_rate='constant')
sk_model.set_init_params({'n_features': 4, 'n_classes': 2})
sk_model_native = copy.deepcopy(sk_model)
sk_optim_w = NativeSkLearnOptimizer(sk_model_native, None)
with sk_optim_w.optimizer_processing():
sk_optim_w.init_training()
sk_model_native.train(self.data, self.targets)
sk_optim_w.step()
# sklearn with declearn optimizers
sk_model_declearn = copy.deepcopy(sk_model)
self.assertDictEqual(sk_model_declearn.get_params(), sk_model_native.get_params()) # if this is not passing, test will fail
dec_optim_w = DeclearnOptimizer(sk_model_declearn, FedOptimizer(lr=learning_rate))
with dec_optim_w.optimizer_processing():
dec_optim_w.init_training()
sk_model_declearn.train(self.data, self.targets)
dec_optim_w.step()
for (k,v_ref), (k, v) in zip(sk_model_native.get_weights().items(), sk_model_declearn.get_weights().items()):
self.assertTrue(np.all(np.isclose(v, v_ref)))
def test_sklearnbasedoptimizer_02_optimizer_processing(self):
learning_rate = .12345
num_features = 4
num_classes = 2
for model in self._sklearn_model:
# 1. test for declearn optimizers
optim = FedOptimizer(lr=learning_rate)
optim_wrapper = DeclearnOptimizer(model, optim)
model.set_init_params({'n_features': num_features, 'n_classes': num_classes})
model.model.penality = None # disable penality
init_optim_hyperparameters = copy.deepcopy(model.get_params())
with optim_wrapper.optimizer_processing():
disabled_optim_hyperparameters = model.get_params()
model.train(self.data, self.targets)
model_weights_before_step = copy.deepcopy(model.get_weights())
optim_wrapper.step()
model_weights_after = model.get_weights()
for (l, grads), (l, w_before_step), (l, w_after) in zip(model.get_gradients().items(),
model_weights_before_step.items(),
model_weights_after.items()):
# check that only the declearn learning rate is used for training the model
self.assertTrue(np.all(np.isclose(w_after, w_before_step - learning_rate * grads)))
self.assertNotEqual(disabled_optim_hyperparameters, init_optim_hyperparameters)
self.assertDictEqual(init_optim_hyperparameters, model.get_params())
def test_sklearnbasedoptimizer_03_invalid_method(self):
# test that zero_grad raises error if model is sklearn
for model in self._sklearn_model:
optim = FedOptimizer(lr=.12345)
optim_wrapper = DeclearnOptimizer(model, optim)
with self.assertRaises(FedbiomedOptimizerError):
optim_wrapper.zero_grad()
class TestNativeTorchOptimizer(unittest.TestCase):
def setUp(self) -> None:
self.torch_models = (nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
),
nn.Linear(4,2),)
self.torch_optimizers = (torch.optim.SGD,
torch.optim.Adam,
torch.optim.Adagrad
)
def test_nativetorchoptimizer_01_step(self):
# check that pytorch optimizer are called when calling `NativeTorchOptimizer.step()`
learning_rate = .12345
for model in self.torch_models:
for optim_func in self.torch_optimizers:
optim = optim_func(model.parameters(), lr=learning_rate)
optim_w = NativeTorchOptimizer(TorchModel(model), optim)
with patch.object(optim_func, 'step') as step_patch:
optim_w.step()
step_patch.assert_called_once()
def test_nativetorchoptimizer_02_getlearningrate(self):
"""test_torch_nn_08_get_learning_rate: test we retrieve the appropriate
learning rate
"""
# first test wih basic optimizer (eg without learning rate scheduler)
model = TorchModel(torch.nn.Linear(2, 3))
lr = .1
dataset = torch.Tensor([[1, 2], [1, 1], [2, 2]])
target = torch.Tensor([1, 2, 2])
optimizer = NativeTorchOptimizer(model, torch.optim.SGD(model.model.parameters(), lr=lr))
lr_extracted = optimizer.get_learning_rate()
self.assertListEqual(lr_extracted, [lr])
# then test using a pytorch scheduler
scheduler = LambdaLR(optimizer.optimizer, lambda e: 2*e)
# this pytorch scheduler increase earning rate by twice its previous value
for e, (x,y) in enumerate(zip(dataset, target)):
# training a simple model in pytorch fashion
# `e` represents epoch
out = model.model.forward(x)
optimizer.zero_grad()
loss = torch.mean(out) - y
loss.backward()
optimizer.step()
scheduler.step()
# checks
lr_extracted = optimizer.get_learning_rate()
self.assertListEqual(lr_extracted, [lr * 2 * (e+1)])
class TestNativeSklearnOptimizer(unittest.TestCase):
def setUp(self) -> None:
self._sklearn_model_wrappers = (SkLearnModel(SGDClassifier),
SkLearnModel(SGDRegressor))
def tearDown(self) -> None:
return super().tearDown()
def test_nativesklearnoptimizer_01_optimizer_post_processing(self):
for model in self._sklearn_model_wrappers:
init_model_hyperparameters = model.get_params()
optim_wrapper = NativeSkLearnOptimizer(model)
with optim_wrapper.optimizer_processing():
model_hyperparameters = model.get_params()
self.assertDictEqual(init_model_hyperparameters, model_hyperparameters,
'context manager has changed some model hyperparameters but should not when using NativeSklearnOptimizer')
self.assertDictEqual(model_hyperparameters, model.get_params())
class TestOptimizerBuilder(unittest.TestCase):
def setUp(self) -> None:
self.torch_models = (nn.Module(),
nn.Linear(4, 2),)
self.sklearn_models = (SkLearnModel(SGDClassifier),
SkLearnModel(SGDRegressor),)
torch_model = nn.Linear(4, 2)
self.native_torch_optimizers = (torch.optim.SGD(torch_model.parameters(), lr=.12345),
torch.optim.Adam(torch_model.parameters(), lr=.12345),
torch.optim.Adagrad(torch_model.parameters(), lr=.12345),)
self.modules = [
ScaffoldServerModule(),
GaussianNoiseModule(),
YogiMomentumModule(),
L2Clipping(),