forked from fedbiomed/fedbiomed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_medical_datasets.py
1061 lines (830 loc) · 45 KB
/
test_medical_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import io
import sys
import unittest
import os
import random
from random import randint, choice
import shutil
import tempfile
from pathlib import Path, PosixPath
from unittest.mock import patch, MagicMock
from uuid import uuid4
import itk
import monai
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from monai.data import ITKReader
from monai.transforms import LoadImage, ToTensor, Compose, Identity, PadListDataCollate, GaussianSmooth
from fedbiomed.common.data import NIFTIFolderDataset
from fedbiomed.common.exceptions import FedbiomedDatasetError, FedbiomedLoadingBlockError
from torch.utils.data import Dataset
from torchvision.transforms import Lambda
from fedbiomed.common.data import MedicalFolderDataset, MedicalFolderBase, MedicalFolderController,\
MedicalFolderLoadingBlockTypes, DataLoadingPlan, MapperBlock
class TestNIFTIFolderDataset(unittest.TestCase):
def setUp(self) -> None:
# Create fake dataset
self.n_classes = 3
self.n_samples = [random.randint(2, 6) for _ in range(self.n_classes)]
self.root = tempfile.mkdtemp() # Creates and returns tempdir
self._create_synthetic_dataset()
def tearDown(self) -> None:
shutil.rmtree(self.root)
def test_nifti_folder_dataset_01_instantiation_correct(self):
# correct instantiations
# here we test that each instantation is a `NIFTIFolderDataset`
# object, but the true goal of the test is to check that parameters
# are accepted when initializing object
self.assertIsInstance(NIFTIFolderDataset(self.root),
NIFTIFolderDataset)
self.assertIsInstance(
NIFTIFolderDataset(self.root, None, None),
NIFTIFolderDataset)
self.assertIsInstance(
NIFTIFolderDataset(self.root, transform=Identity(),
target_transform=None),
NIFTIFolderDataset)
self.assertIsInstance(NIFTIFolderDataset(self.root, transform=None, target_transform=Identity()),
NIFTIFolderDataset)
def test_nifti_folder_dataset_02_instantiation_incorrect(self):
# incorrect instantiations
# incorrect path - type or values
for dir in (3, '~badaccount', '/not/existent/dir'):
with self.assertRaises(FedbiomedDatasetError):
NIFTIFolderDataset(dir)
# empty path directory
temp = tempfile.mkdtemp()
with self.assertRaises(FedbiomedDatasetError):
NIFTIFolderDataset(temp)
# directory with no nifti file
temp = tempfile.mkdtemp()
tempsub = os.path.join(temp, 'subfolder')
os.mkdir(tempsub)
Path(os.path.join(tempsub, 'testfile')).touch()
with self.assertRaises(FedbiomedDatasetError):
NIFTIFolderDataset(temp)
# directory unreadable
temp = tempfile.mkdtemp()
tempsub = os.path.join(temp, 'subfolder')
os.mkdir(tempsub)
os.chmod(tempsub, 0)
with self.assertRaises(FedbiomedDatasetError):
NIFTIFolderDataset(temp)
def fonction():
return True
test_transform = fonction()
# incorrectly typed transform functions
with self.assertRaises(FedbiomedDatasetError):
NIFTIFolderDataset(self.root, test_transform, None)
with self.assertRaises(FedbiomedDatasetError):
NIFTIFolderDataset(self.root, None, test_transform)
def test_nifti_folder_dataset_03_indexation_correct(self):
dataset = NIFTIFolderDataset(self.root)
img, target = dataset[0]
self.assertTrue(torch.is_tensor(img))
self.assertEqual(img.dtype, torch.float32)
self.assertTrue(isinstance(target, int))
def test_nifti_folder_dataset_04_indexation_incorrect(self):
dataset = NIFTIFolderDataset(self.root)
# type error
for index in ('toto', {}):
with self.assertRaises(FedbiomedDatasetError):
_ = dataset[index]
# value error
for index in (-2, len(dataset), len(dataset) + 10):
with self.assertRaises(IndexError):
_ = dataset[index]
# transformation error (transform function do not match data)
transformation = [
[PadListDataCollate(), None],
[None, PadListDataCollate()],
[PadListDataCollate(), PadListDataCollate()]
]
for transform, target_transform in transformation:
dataset = NIFTIFolderDataset(self.root, transform, target_transform)
with self.assertRaises(FedbiomedDatasetError):
dataset[0]
# unreadable sample file
temp = tempfile.mkdtemp()
tempsub = os.path.join(temp, 'subfolder')
os.mkdir(tempsub)
tempsubfile = os.path.join(tempsub, 'testfile.nii')
Path(tempsubfile).touch()
dataset = NIFTIFolderDataset(temp)
os.chmod(tempsubfile, 0)
with self.assertRaises(FedbiomedDatasetError):
dataset[0]
def test_nifti_folder_dataset_05_len(self):
dataset = NIFTIFolderDataset(self.root)
n_samples = len(dataset)
self.assertEqual(n_samples, sum(self.n_samples))
def test_nifti_folder_dataset_06_labels(self):
dataset = NIFTIFolderDataset(self.root)
# verify type of returned labels
labels = dataset.labels()
self.assertTrue(isinstance(labels, list))
for label in labels:
self.assertTrue(isinstance(label, str))
# compare label list content
self.assertEqual(sorted(labels), sorted(self.class_names))
def test_nifti_folder_dataset_07_files(self):
dataset = NIFTIFolderDataset(self.root)
# verify type of returned files
files = dataset.files()
self.assertTrue(isinstance(files, list))
for file in files:
self.assertTrue(isinstance(file, Path))
# compare label list content
self.assertEqual(sorted([str(f) for f in files]),
sorted([str(Path(f).expanduser().resolve()) for f in self.sample_paths]))
def test_nifti_folder_dataset_08_getitem(self):
# test all combination of using/not using a transformation
# with identity transformation for the type of the data
transformation = [
[None, None],
[Identity(), None],
[None, Identity()],
[Identity(), Identity()]
]
for transform, target_transform in transformation:
dataset = NIFTIFolderDataset(self.root, transform, target_transform)
for index, [input, target] in enumerate(dataset):
# test return types
self.assertTrue(isinstance(input, torch.Tensor))
self.assertTrue(isinstance(target, int))
file_index = self.sample_paths.index(Path(dataset.files()[index]))
# check that targets match (need to compare label string as ordering may differ)
self.assertEqual(dataset.labels()[target], self.class_names[self.sample_class[file_index]])
# check that the input match (read content)
# don't apply transformation as we're only doing idle transform
synth_input_func = Compose([
LoadImage(ITKReader(), image_only=True),
ToTensor()
])
synth_input = synth_input_func(self.sample_paths[file_index])
self.assertTrue(torch.all(torch.eq(input, synth_input)))
# check we read all the samples
self.assertEqual(index + 1, sum(self.n_samples))
# not really a unit test belonging to this class, but nice to have it => ok ?
def test_nifti_folder_dataset_09_dataloader(self):
dataset = NIFTIFolderDataset(self.root)
batch_size = len(dataset) // 2
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
img_batch, targets = next(iter(loader))
self.assertEqual(len(targets), batch_size)
self.assertEqual(len(img_batch), batch_size)
def _create_synthetic_dataset(self):
self.class_names = []
self.sample_paths = []
self.sample_class = []
for class_i, n_samples in enumerate(self.n_samples):
class_name = f'class_{class_i}'
if class_name not in self.class_names:
self.class_names.append(class_name)
class_path = os.path.join(self.root, class_name)
os.makedirs(class_path)
# Create class folder
for subject_i in range(n_samples):
img_path = os.path.join(class_path, f'subject_{subject_i}.nii.gz')
fake_img_data = np.random.rand(10, 10, 10)
img = itk.image_from_array(fake_img_data)
itk.imwrite(img, img_path)
self.sample_paths.append(Path(img_path).expanduser().resolve())
self.sample_class.append(self.class_names.index(class_name))
def _create_synthetic_dataset(root: str, n_samples: int, tabular_file: str, index_col: str):
"""Creates synthetic dataset for test purposes
Args:
root (str): path to dataset
n_samples (int): number of samples
tabular_file (str): path to demographic dataset
index_col (str): column name for subject id
"""
# Image and target data
fake_img_data = np.random.rand(10, 10, 10)
img = itk.image_from_array(fake_img_data)
# Generate subject ids
subject_ids = [str(uuid4()) for _ in range(n_samples)]
modalities = ['T1', 'T2', 'label']
centers = [f'center_{uuid4()}' for _ in range(randint(3, 6))]
demographics = pd.DataFrame()
demographics.index.name = index_col
for subject_id in subject_ids:
subject_folder = os.path.join(root, subject_id)
os.makedirs(subject_folder)
# Create class folder
for modality in modalities:
modality_folder = os.path.join(subject_folder, modality)
os.mkdir(modality_folder)
img_path = os.path.join(modality_folder, f'image_{uuid4()}.nii.gz')
itk.imwrite(img, img_path)
# Add demographics information
demographics.loc[subject_id, 'AGE'] = randint(15, 90)
demographics.loc[subject_id, 'CENTER'] = choice(centers)
demographics.to_csv(tabular_file)
def _create_wrong_formatted_folder_for_medical_folder(root: str, n_samples: int):
"""Creates medical folder without any modalities
Args:
root (str): root path file
n_samples (int): number of samples (ie number of subjects)
"""
subject_ids = [str(uuid4()) for _ in range(n_samples)]
for subject_id in subject_ids:
subject_folder = os.path.join(root, subject_id)
os.makedirs(subject_folder)
## Utilities for testin DataLoadingPlan
modalities_to_folders = {
'T1': ['T1siemens', 'T1philips'],
'T2': ['T2'],
'label': ['label']
}
all_folder_names = [folder for folders in modalities_to_folders.values() for folder in folders]
def patch_is_modality_dir(x):
"""Mock the situation where:
subj1 has philips but not siemens,
subj2 has siemens but not philips
"""
if x.name == 'T1siemens' and x.match('*/subj1/*'):
return False
elif x.name == 'T1philips' and x.match('*/subj2/*'):
return False
elif x.match('*/subj3/*'):
return x.name == 'non-existing-modality'
return True
def patch_modality_iterdir(x):
if x.match('*/subj1'):
return [Path('T1philips'), Path('T2'), Path('label')]
if x.match('*/subj2'):
return [Path('T1siemens'), Path('T2'), Path('label')]
if x.match('*/subj3'):
return [Path('non-existing-modality')]
return [Path('subj1'), Path('subj2'), Path('subj3')]
def patch_modality_glob(self, x):
if self.name not in all_folder_names:
# We are globbing all subject folders
for f in [Path('T1philips'), Path('T2'), Path('label')] + \
[Path('T1siemens'), Path('T2'), Path('label')] + \
[Path('non-existing-modality')]:
yield f
else:
# We are globbing one specific modality folder
yield Path(self.name + '_test.nii')
class TestMedicalFolderDataset(unittest.TestCase):
def setUp(self) -> None:
self.root = tempfile.mkdtemp()
self.tabular_file = os.path.join(self.root, 'participants.csv')
self.index_col = 'FOLDER_NAME'
self.transform = {'T1': Lambda(lambda x: torch.flatten(x))}
self.target_transform = {'label': GaussianSmooth()}
self.n_samples = 10
self.batch_size = 3
print(f'Dataset folder located in: {self.root}')
_create_synthetic_dataset(self.root, self.n_samples, self.tabular_file, self.index_col)
def tearDown(self) -> None:
if 'IXI' not in self.root:
shutil.rmtree(self.root)
def test_medical_folder_dataset_01_instantiating_dataset(self):
dataset = MedicalFolderDataset(self.root)
self._assert_batch_types_and_sizes(dataset)
def dummy_transform(*args, **kwargs):
return True
for transform in "Invalid", \
dummy_transform, \
["Invalid"], \
[dummy_transform], \
["Invalid", "Invalid"], \
[dummy_transform, dummy_transform], \
{'T1': "Invalid"}, \
{'T3': dummy_transform }, \
{'T1': dummy_transform, 'T2': dummy_transform, 'T3': dummy_transform }, \
{'T1': dummy_transform, 'T2': "Invalid"}:
with self.assertRaises(FedbiomedDatasetError):
dataset = MedicalFolderDataset(self.root, data_modalities=['T1', 'T2'], transform=transform)
with self.assertRaises(FedbiomedDatasetError):
dataset = MedicalFolderDataset(self.root, target_modalities=['T1', 'T2'], target_transform=transform)
for modalities in 'T1', ['T1']:
for transform in "Invalid", \
["Invalid"], \
[dummy_transform], \
["Invalid", "Invalid"], \
[dummy_transform, dummy_transform], \
{'T1': "Invalid"}, \
{'T3': dummy_transform }, \
{'T1': dummy_transform, 'T3': dummy_transform }:
with self.assertRaises(FedbiomedDatasetError):
dataset = MedicalFolderDataset(self.root, data_modalities=modalities, transform=transform)
with self.assertRaises(FedbiomedDatasetError):
dataset = MedicalFolderDataset(self.root, target_modalities=modalities, target_transform=transform)
def test_medical_folder_dataset_02_cached_properties(self):
dataset = MedicalFolderDataset(self.root,
tabular_file=self.tabular_file,
index_col=self.index_col)
self.assertIsInstance(dataset, Dataset) # check that instantiation has been completed
print(dataset.demographics.head())
print(dataset.demographics.head())
def test_medical_folder_dataset_03_getitem(self):
# test correct indexation
# test errors
self.patcher = patch('monai.transforms.GaussianSmooth', side_effect=RuntimeError)
self.patcher.start()
dataset = MedicalFolderDataset(self.root,
tabular_file=self.tabular_file,
index_col=self.index_col,
transform= monai.transforms.GaussianSmooth,
)
with self.assertRaises(FedbiomedDatasetError):
dataset[0]
# test case where demographic transform raises error
dataset = MedicalFolderDataset(self.root,
tabular_file=self.tabular_file,
index_col=self.index_col,
demographics_transform= monai.transforms.GaussianSmooth,
)
try:
with self.assertRaises(FedbiomedDatasetError):
dataset[0]
finally:
self.patcher.stop() # make sure patcher is stopped (in order to avid propegating patch to other tests)
# test case where `demographics` type is not correct
dataset = MedicalFolderDataset(self.root,
tabular_file=self.tabular_file,
index_col=self.index_col,
demographics_transform= Lambda(
lambda x: 'this is a bad type for demographics'
' ( expecting a dict but passing a str)'),
)
with self.assertRaises(FedbiomedDatasetError):
dataset[0]
self.patcher.start()
dataset = MedicalFolderDataset(root=self.root,
tabular_file=self.tabular_file,
index_col=self.index_col,
target_transform={"label": monai.transforms.GaussianSmooth},
demographics_transform=lambda x: torch.as_tensor(x['AGE'])
)
try:
with self.assertRaises(FedbiomedDatasetError):
dataset[0]
finally:
self.patcher.stop() # make sure patcher is stopped (in order to avoid propagating patch to other tests)
def test_medical_folder_dataset_04_len(self):
dataset = MedicalFolderDataset(self.root)
# check correct use of number of smaples
self.assertEqual(len(dataset), self.n_samples)
# check __len__ behaviour when self.subject_folder returns an empty list
patcher = patch('fedbiomed.common.data._medical_datasets.MedicalFolderDataset.subject_folders',
return_value = [])
patcher.start()
dataset = MedicalFolderDataset(self.root)
try:
with self.assertRaises(FedbiomedDatasetError):
len(dataset)
finally:
patcher.stop() # make sure patcher is stopped (otherwise will propagate error)
def test_medical_folder_dataset_05_tabular_data_setter(self):
dataset = MedicalFolderDataset(self.root,
tabular_file=self.tabular_file,
index_col=self.index_col,)
# test with a temporary file
tmp_file = tempfile.NamedTemporaryFile()
dataset.tabular_file = tmp_file.name
self.assertEqual(str(dataset.tabular_file), str(Path(tmp_file.name).expanduser().resolve()))
# check error is triggered if incorrect type is passed
with self.assertRaises(FedbiomedDatasetError):
dataset.tabular_file = 1233
with self.assertRaises(FedbiomedDatasetError):
dataset.tabular_file = []
with self.assertRaises(FedbiomedDatasetError):
dataset.tabular_file = True
# check error is triggered if path is not existing
with self.assertRaises(FedbiomedDatasetError):
dataset.tabular_file = '/a/non/existing/file'
# check error is triggered if a folder is passed instead of a file
temp_dir = tempfile.mkdtemp()
with self.assertRaises(FedbiomedDatasetError):
dataset.tabular_file = temp_dir
def test_medical_folder_dataset_06_index_col_setter(self):
dataset = MedicalFolderDataset(self.root,
tabular_file=self.tabular_file,
index_col=self.index_col,)
# test with a index col string
index_col_str = '1234' # def _check_modality_exists(self, modality: List[str]) -> bool:
dataset.index_col = index_col_str
self.assertEqual(dataset.index_col, index_col_str)
# test with a index col integer
index_col_int = 1234
dataset.index_col = index_col_int
self.assertEqual(dataset.index_col, dataset.index_col)
# check error is triggered if incorrect type is passed
with self.assertRaises(FedbiomedDatasetError):
dataset.index_col = 2.
with self.assertRaises(FedbiomedDatasetError):
dataset.index_col = [1, 2]
with self.assertRaises(FedbiomedDatasetError):
dataset.index_col = {}
def test_medical_folder_dataset_07_instantiation_with_demographics(self):
dataset = MedicalFolderDataset(self.root, tabular_file=self.tabular_file, index_col=self.index_col,
demographics_transform=lambda x: torch.as_tensor(x['AGE']))
self._assert_batch_types_and_sizes(dataset)
def test_medical_folder_dataset_08_demographics_getter(self):
# test getter
# # test case where tabular file is None
dataset = MedicalFolderDataset(self.root, tabular_file=self.tabular_file,)
df = dataset.demographics
self.assertIsNone(df)
# # test case where index_col is None
dataset = MedicalFolderDataset(self.root, index_col=self.index_col)
df = dataset.demographics
self.assertIsNone(df)
# # test normal case scenario: loading demographics file
dataset = MedicalFolderDataset(self.root, tabular_file=self.tabular_file, index_col=self.index_col)
self.assertIsInstance(dataset.demographics, pd.DataFrame)
# # create dataset with duplicated patients, and check if duplicated values are removed
values = {"A": [1, 2, 3, 4],
"B": ['patient_1', 'patient_2', 'patient_1', 'patient_3'],
"C": ['a', 'b', 'c', 'd']}
df = pd.DataFrame(values)
tmp_file = tempfile.mkdtemp()
csv_name = os.path.join(tmp_file, 'test_csv.csv')
df.to_csv(csv_name)
dataset = MedicalFolderDataset(self.root, tabular_file=csv_name, index_col=2)
values = {"A": [1, 2, 4],
"B": ['patient_1', 'patient_2', 'patient_3'],
"C": ['a', 'b', 'd']}
demographics_without_index = dataset.demographics[["A", "C"]].reset_index(drop=True)
# compare demograhics without index first
self.assertTrue(demographics_without_index.equals(pd.DataFrame(values)[["A", "C"]]))
# compare index of dataframe
self.assertListEqual(dataset.demographics.index.tolist(), values["B"])
# # test if error is raised when unable to load demographic file
dataset = MedicalFolderDataset(self.root, tabular_file=self.tabular_file, index_col=self.index_col)
patcher = patch('fedbiomed.common.data._medical_datasets.MedicalFolderDataset.read_demographics',
side_effect=OSError)
patcher.start()
try:
with self.assertRaises(FedbiomedDatasetError):
df = dataset.demographics
finally:
patcher.stop()
def test_medical_folder_dataset_09_demographics_setter(self):
# check that it is not possible to set demographic attribute
dataset = MedicalFolderDataset(self.root, tabular_file=self.tabular_file,)
with self.assertRaises(AttributeError):
dataset.demographics = pd.DataFrame({"A": [1, 2, 3, 4], "B": ['a', 'b', 'c', 'c']})
def test_medical_folder_dataset_10_shape(self):
dataset = MedicalFolderDataset(self.root, tabular_file=self.tabular_file, index_col=self.index_col)
shape = dataset.shape()
self.assertEqual(shape, {'T1': [10, 10, 10],
'label': [10, 10, 10],
'demographics': (10, 2),
'num_modalities': 2})
# check shape with 2 modalities + labels
dataset = MedicalFolderDataset(self.root,
tabular_file=self.tabular_file,
index_col=self.index_col,
data_modalities=['T1', 'T2'])
shape = dataset.shape()
self.assertEqual(shape, {'T1': [10, 10, 10],
'T2': [10, 10, 10],
'label': [10, 10, 10],
'demographics': (10, 2),
'num_modalities': 3})
def test_medical_folder_dataset_11_data_transforms(self):
dataset = MedicalFolderDataset(self.root, transform=self.transform)
for i, ((images, demographics), targets) in enumerate(dataset):
# test indexation
self.assertTrue(images['T1'].dim() == 1)
# test iteration
(images_indxed, _), _ = dataset[i]
self.assertTrue(images_indxed['T1'].dim() == 1)
def test_medical_folder_dataset_12_target_transform(self):
dataset = MedicalFolderDataset(self.root, target_transform=self.target_transform)
(images, demographics), targets = dataset[0]
self.assertEqual(images['T1'].shape, targets['label'].shape)
def test_medical_folder_dataset_13_set_dataset_parameters(self):
dataset = MedicalFolderDataset(self.root)
with self.assertRaises(FedbiomedDatasetError):
dataset.set_dataset_parameters("NONEDICTPARAMS")
for params in {'bad_key': 1}, \
{"tabular_file": self.tabular_file, 'bad_key': 1}, \
{'bad_key': 1, "tabular_file": self.tabular_file, "index_col": self.index_col}:
with self.assertRaises(FedbiomedDatasetError):
dataset.set_dataset_parameters(params)
dataset.set_dataset_parameters({"tabular_file": self.tabular_file, "index_col": self.index_col})
self.assertEqual(str(dataset.tabular_file), str(Path(self.tabular_file).expanduser().resolve()))
self.assertEqual(dataset.index_col, self.index_col)
def test_medical_folder_dataset_14_demographics_transform(self):
dataset = MedicalFolderDataset(self.root, tabular_file=self.tabular_file, index_col=self.index_col,
demographics_transform=lambda x: torch.as_tensor(x['AGE']))
# check indexation
csv_data = pd.read_csv(self.tabular_file)
# check over a loop
for i, ((images, demographics), targets) in enumerate(dataset):
self.assertTrue(demographics.numpy() in csv_data.AGE.values)
(images, demographics_indxed), targets = dataset[i]
self.assertTrue(demographics_indxed.numpy() in csv_data.AGE.values)
dataset = MedicalFolderDataset(self.root, demographics_transform=lambda x: torch.as_tensor(x['AGE']))
with self.assertRaises(FedbiomedDatasetError):
(images, demographics), targets = dataset[0]
def robust_transform(demographics):
if isinstance(demographics, dict) and len(demographics) == 0:
return demographics
else:
return demographics['AGE']
dataset = MedicalFolderDataset(self.root, tabular_file=self.tabular_file, index_col=self.index_col,
demographics_transform=robust_transform)
(images, demographics), targets = dataset[0]
csv_data = pd.read_csv(self.tabular_file)
self.assertTrue(demographics.numpy() in csv_data.AGE.values)
dataset = MedicalFolderDataset(self.root, demographics_transform=robust_transform)
(images, demographics), targets = dataset[0]
self.assertIsInstance(demographics, torch.Tensor)
self.assertTrue(demographics.numel() == 0)
def _assert_batch_types_and_sizes(self, dataset: Dataset):
"""Asserts first batches correct types and lengths
Args:
dataset (Dataset): a Dataset object that should have
correct types (dict, dict, torch.Tensor) and correct batch size
Raises:
AssertionError if test fails
"""
data_loader = DataLoader(dataset, batch_size=self.batch_size)
(images, demographics), targets = next(iter(data_loader)) # get the first iteration of dataloader
self.assertIsInstance(images, dict)
self.assertIsInstance(targets, dict)
self.assertIsInstance(demographics, torch.Tensor)
lengths = [len(b) for b in images.values()]
lengths += [len(b) for b in targets.values()]
lengths += [demographics.shape[0]]
# Assert for batch size on modalities and demographics
self.assertTrue(len(set(lengths)) == 1)
@patch('pathlib.Path.iterdir', new=patch_modality_iterdir)
@patch('pathlib.Path.is_dir', new=patch_is_modality_dir)
@patch('pathlib.Path.glob', new=patch_modality_glob)
def test_medical_folder_dataset_15_data_loading_plan(self):
medical_folder_controller = MedicalFolderController(root=self.root)
dataset = medical_folder_controller.load_MedicalFolder()
self.assertFalse(dataset.subject_folders())
# with DataLoadingPlan
medical_folder_controller = MedicalFolderController(root=self.root)
dlb = MapperBlock()
dlb.map = modalities_to_folders
medical_folder_controller.set_dlp(DataLoadingPlan({MedicalFolderLoadingBlockTypes.MODALITIES_TO_FOLDERS: dlb}))
dataset = medical_folder_controller.load_MedicalFolder()
expected_subject_folders = [Path(self.root).joinpath('subj1'),
Path(self.root).joinpath('subj2')]
for p1, p2 in zip(dataset.subject_folders(), expected_subject_folders):
self.assertEqual(os.path.realpath(p1), os.path.realpath(p2))
dataset._reader = MagicMock()
dataset._reader.side_effect = lambda x: x
images_dict = dataset.load_images(Path(self.root).joinpath('subj1'), ['T1', 'T2'])
expected_images_dict = {
'T1': Path('T1philips_test.nii').resolve(),
'T2': Path('T2_test.nii').resolve()
}
self.assertEqual(images_dict, expected_images_dict)
images_dict = dataset.load_images(Path(self.root).joinpath('subj2'), ['T1', 'T2'])
expected_images_dict = {
'T1': Path('T1siemens_test.nii').resolve(),
'T2': Path('T2_test.nii').resolve()
}
self.assertEqual(images_dict, expected_images_dict)
with self.assertRaises(FedbiomedLoadingBlockError):
_ = dataset.load_images(Path(self.root).joinpath('subj1'), ['non-existing-modality'])
dataset = MedicalFolderDataset(root=self.root,
tabular_file=None,
index_col=None,
data_modalities=['T1', 'T2'],
target_modalities=['label'])
dataset._reader = MagicMock()
dataset._reader.side_effect = lambda x: x
with self.assertRaises(FedbiomedDatasetError):
_ = dataset[0]
dataset.set_dlp(DataLoadingPlan({MedicalFolderLoadingBlockTypes.MODALITIES_TO_FOLDERS: dlb}))
(data, demographics), label = dataset[0]
self.assertEqual(data, {'T1': Path('T1philips_test.nii').resolve(), 'T2': Path('T2_test.nii').resolve()})
self.assertEqual(demographics.numel(), 0)
self.assertEqual(label, {'label': Path('label_test.nii').resolve()})
def test_medical_folder_dataset_16_load_MedicalFolder(self):
# correct calls to load_MedicalFolder
medical_folder_controller = MedicalFolderController(root=self.root)
dataset = medical_folder_controller.load_MedicalFolder()
self.assertTrue(isinstance(dataset, MedicalFolderDataset))
self.assertEqual(os.path.realpath(dataset.root),
os.path.realpath(self.root))
# bad call, no root defined
medical_folder_controller = MedicalFolderController()
with self.assertRaises(FedbiomedDatasetError):
medical_folder_controller.load_MedicalFolder()
# bad call, MedicalFolderDataset creation fails
medical_folder_controller = MedicalFolderController(root=self.root)
mfd_patcher = patch('fedbiomed.common.data.MedicalFolderDataset.__init__', side_effect=FedbiomedDatasetError)
mfd_patcher.start()
with self.assertRaises(FedbiomedDatasetError):
medical_folder_controller.load_MedicalFolder()
mfd_patcher.stop()
class TestMedicalFolderBase(unittest.TestCase):
def setUp(self) -> None:
self.root = tempfile.mkdtemp()
self.tabular_file = os.path.join(self.root, 'participants.csv')
self.index_col = 'FOLDER_NAME'
self.transform = {'T1': Lambda(lambda x: torch.flatten(x))}
self.target_transform = {'label': GaussianSmooth()}
self.n_samples = 10
self.batch_size = 3
_create_synthetic_dataset(self.root, self.n_samples, self.tabular_file, self.index_col)
# alternate root
self.root2 = tempfile.mkdtemp()
self.tabular_file2 = os.path.join(self.root2, 'participants.csv')
_create_synthetic_dataset(self.root2, self.n_samples, self.tabular_file2, self.index_col)
def tearDown(self) -> None:
if 'IXI' not in self.root:
shutil.rmtree(self.root) # is that useful since temporary folder will be deleted
pass
def test_medical_folder_base_01_init(self):
self.medical_folder_base = MedicalFolderBase()
self.assertIsNone(self.medical_folder_base.root, "MedicalFolderBase root should not in empty initialization")
self.medical_folder_base = MedicalFolderBase(root=self.root2)
self.assertIsInstance(self.medical_folder_base.root, PosixPath)
self.assertEqual(os.path.realpath(self.medical_folder_base.root),
os.path.realpath(self.root2),
"MedicalFolderBase root should not in empty initialization")
# Setting root to a valid value with setter
self.medical_folder_base.root = self.root
self.assertIsInstance(self.medical_folder_base.root, PosixPath)
self.assertEqual(os.path.realpath(self.medical_folder_base.root),
os.path.realpath(self.root),
"MedicalFolderBase root should not in empty initialization")
with self.assertRaises(FedbiomedDatasetError):
self.medical_folder_base = MedicalFolderBase(root="unknown-folder-path")
# Try to set root to None
with self.assertRaises(FedbiomedDatasetError):
self.medical_folder_base.root = None
# If subjects has no modality folder
dummy_root = tempfile.mkdtemp()
_create_wrong_formatted_folder_for_medical_folder(dummy_root, 3)
with self.assertRaises(FedbiomedDatasetError):
self.medical_folder_base.root = dummy_root
# Remove tmp folder
shutil.rmtree(dummy_root)
# If root has no subject folder
dummy_root_2 = tempfile.mkdtemp()
_create_wrong_formatted_folder_for_medical_folder(dummy_root, 0)
with self.assertRaises(FedbiomedDatasetError):
self.medical_folder_base.root = dummy_root_2
# create temporary file and check if MedicalFolderBase triggers error if file is passed instead a folder
Path(os.path.join(dummy_root_2, 'test_file')).touch()
with self.assertRaises(FedbiomedDatasetError):
MedicalFolderBase(root=os.path.join(dummy_root_2, 'test_file'))
# Remove tmp folder
shutil.rmtree(dummy_root_2)
def test_medical_folder_base_02_modalities(self):
"""Testing the method gets modalities from subject folder"""
self.medical_folder_base = MedicalFolderBase(root=self.root)
unique_modalities, all_modalities = self.medical_folder_base.modalities()
self.assertIsInstance(all_modalities, list, "All modalities are not as expected")
unique_modalities.sort()
self.assertListEqual(unique_modalities, ["T1", "T2", "label"])
def test_medical_folder_base_03_modalities_existing(self):
self.medical_folder_base = MedicalFolderBase(root=self.root)
demographics = pd.read_csv(self.tabular_file)
for subject in demographics[self.index_col]:
logical = all(self.medical_folder_base.is_modalities_existing(subject,
['T1', 'T2', 'label']))
self.assertTrue(logical)
# remove one modality to each subject
for subject in demographics[self.index_col]:
modalities_folders_path = os.listdir(os.path.join(self.root, subject))
modality_to_remove = choice(modalities_folders_path)
shutil.rmtree(os.path.join(self.root, subject, modality_to_remove))
# action
logical = self.medical_folder_base.is_modalities_existing(subject,
['T1', 'T2', 'label'])
# checks
self.assertFalse(all(logical))
self.assertTrue(any(logical))
# incorrect types for subject (expecting string)
for subject in 3, {}, True, ("my subject"), { "my subject": 1}, ["my subject"]:
with self.assertRaises(FedbiomedDatasetError):
self.medical_folder_base.is_modalities_existing(subject, ['T1', 'T2', 'label'])
# incorrect types for modalities (expecting list of strings)
for modalities in "this is not a list", 3, {}, True, ("un"), { "un": 1}, [1], ['T1', 4], ['T1', 'T2', 'label', []]:
with self.assertRaises(FedbiomedDatasetError):
self.medical_folder_base.is_modalities_existing("any subject", modalities)
def test_medical_folder_base_03_available_subjects(self):
"""Testing the method that extract available subjects for training"""
self.medical_folder_base = MedicalFolderBase(root=self.root)
file = self.medical_folder_base.read_demographics(self.tabular_file, self.index_col)
complete_subject, missing_folders, missing_entries = \
self.medical_folder_base.available_subjects(subjects_from_index=file.index)
# Test results
self.assertListEqual(missing_folders, [])
self.assertListEqual(missing_entries, [])
def test_medical_folder_base_04_read_demographics(self):
self.medical_folder_base = MedicalFolderBase(root=self.root)
with self.assertRaises(FedbiomedDatasetError):
self.medical_folder_base.read_demographics(os.path.join(self.root, 'toto'), index_col=12)
test_csv = pd.DataFrame([[1, 2, 3], [1, 2, 3]])
test_csv.to_csv(os.path.join(self.root, 'toto.csv'))
df = self.medical_folder_base.read_demographics(os.path.join(self.root, 'toto.csv'), index_col=1)
self.assertIsInstance(df, pd.DataFrame)
def test_medical_folder_base_05_deographic_column_names(self):
self.medical_folder_base = MedicalFolderBase(root=self.root)
variable_names = ['var_1', 'var_2', 'var_3']
test_csv = pd.DataFrame({v: np.random.randn(10) for v in variable_names})
test_csv.to_csv(os.path.join(self.root, 'toto.csv'), index=False)
# action
col = self.medical_folder_base.demographics_column_names(os.path.join(self.root, 'toto.csv'))
# check
self.assertListEqual(col.tolist(), variable_names)
@patch('pathlib.Path.iterdir', new=patch_modality_iterdir)
@patch('pathlib.Path.is_dir', new=patch_is_modality_dir)
@patch('pathlib.Path.glob', new=patch_modality_glob)
def test_medical_folder_base_06_modalities_existing_multiple_names(self):
medical_folder_base = MedicalFolderBase(root=self.root)
self.assertEqual(
medical_folder_base._subject_modality_folder('subj1', 'T1philips'),
Path('T1philips'))
self.assertIsNone(medical_folder_base._subject_modality_folder('subj1', 'T1siemens'))
all_modalities = ['T1philips', 'T1siemens', 'T2', 'label', 'non-existing-modality']
is_modalities_existing = medical_folder_base.is_modalities_existing('subj1', all_modalities)
self.assertEqual(is_modalities_existing, [True, False, True, True, False])
is_modalities_existing = medical_folder_base.is_modalities_existing('subj2', all_modalities)
self.assertEqual(is_modalities_existing, [False, True, True, True, False])
is_modalities_existing = medical_folder_base.is_modalities_existing('subj3', all_modalities)
self.assertEqual(is_modalities_existing, [False, False, False, False, True])
complete_subjects = medical_folder_base.complete_subjects(['subj1', 'subj2', 'subj3'], all_modalities)
self.assertFalse(complete_subjects)
# with DataLoadingPlan
dlb = MapperBlock()
dlb.map = modalities_to_folders
medical_folder_base.set_dlp(DataLoadingPlan({MedicalFolderLoadingBlockTypes.MODALITIES_TO_FOLDERS: dlb}))
self.assertEqual(
medical_folder_base._subject_modality_folder('subj1', 'T1'),
Path('T1philips'))
self.assertIsNone(medical_folder_base._subject_modality_folder('subj3', 'T1'))
is_modalities_existing = medical_folder_base.is_modalities_existing('subj1', ['T1', 'T2', 'label'])
self.assertEqual(is_modalities_existing, [True, True, True])
is_modalities_existing = medical_folder_base.is_modalities_existing('subj2', ['T1', 'T2', 'label'])
self.assertEqual(is_modalities_existing, [True, True, True])
is_modalities_existing = medical_folder_base.is_modalities_existing('subj3', ['T1', 'T2', 'label'])
self.assertEqual(is_modalities_existing, [False, False, False])
complete_subjects = medical_folder_base.complete_subjects(['subj1', 'subj2', 'subj3'],
['T1', 'T2', 'label'])
self.assertEqual(complete_subjects, ['subj1', 'subj2'])
def test_medical_folder_base_07_subject_modality_folder(self):
medical_folder_base = MedicalFolderBase(root=self.root)
# calling with bad arguments
for subject in 3, {}, True, ("my subject"), { "my subject": 1}, ["my subject"]:
with self.assertRaises(FedbiomedDatasetError):
medical_folder_base._subject_modality_folder(subject, "my modality")
for modality in 3, {}, True, ("my modality"), { "my modality": 1}, ["my modality"]: