forked from fedbiomed/fedbiomed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_metrics.py
493 lines (401 loc) · 24.8 KB
/
test_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import unittest
import numpy as np
from unittest.mock import patch
from fedbiomed.common.metrics import Metrics, MetricTypes, _MetricCategory # noqa
from fedbiomed.common.exceptions import FedbiomedMetricError
class TestMetrics(unittest.TestCase):
"""
Test the Metrics class
"""
# before the tests
def setUp(self):
self.metrics = Metrics()
pass
# after the tests
def tearDown(self):
pass
def test_metrics_01_evaluate_base_errors(self):
"""Testing exceptions for evaluate method of metrics"""
# Test invalid y_pred
with self.assertRaises(FedbiomedMetricError):
y_true = 'toto'
y_pred = [1, 2, 3]
self.metrics.evaluate(y_true=y_true, y_pred=y_pred, metric=MetricTypes.ACCURACY)
# Test invalid y_true
with self.assertRaises(FedbiomedMetricError):
y_true = [1, 2, 3]
y_pred = 'toto'
self.metrics.evaluate(y_true=y_true, y_pred=y_pred, metric=MetricTypes.ACCURACY)
# Test invalid metric type
with self.assertRaises(FedbiomedMetricError):
y_true = [0, 0, 1, 0]
y_pred = [0, 1, 1, 1]
self.metrics.evaluate(y_true=y_true, y_pred=y_pred, metric='DDD')
def test_metrics_02_evaluate_binary_classification_1D_array(self):
"""Testing evaluate method of metrics"""
# Test both are 1D array with labels
y_true = [0, 1, 0, 1]
y_pred = [0, 1, 0, 1]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Binary: Could not calculate Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Binary: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Binary: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Binary: Could not compute Precision correctly')
def test_metrics_03_evaluate_binary_classification_1D_aray_string(self):
# Test both are 1D array with labels as string
y_true = ['0', '1', '0', '1']
y_pred = ['0', '1', '0', '1']
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Binary: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Binary: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Binary: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Binary: Could not compute Precision correctly')
def test_metrics_04_evaluate_binary_classification_2D_1D_array(self):
"""Test where y_true is one-hot encoded while y_pred is not."""
# Test y_true is 2D array and y_pred 1D array with num labels
y_true = [[1, 0], [0, 1], [1, 0], [0, 1]]
y_pred = [0, 1, 0, 1]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Binary: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Binary: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Binary: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Binary: Could not compute Precision correctly')
def test_metrics_05_evaluate_binary_classification_2D_2D_array(self):
# Test y_true and y_pred are 2D arrays
y_true = [[1, 0], [0, 1], [1, 0], [0, 1]]
y_pred = [[1, 0], [0, 1], [1, 0], [0, 1]]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Binary: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Binary: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Binary: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Binary: Could not compute Precision correctly')
def test_metrics_06_evaluate_binary_classification_2D_2D_array(self):
# Test y_true is 1D and y_pred is 2D array
y_true = [0, 1, 0, 1]
y_pred = [[1, 0], [0, 1], [1, 0], [0, 1]]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Binary: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Binary: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Binary: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Binary: Could not compute Precision correctly')
def test_metrics_07_evaluate_binary_classification_2D_1D_array_with_probs(self):
# Binary: test y_true is 1D and y_pred is 1D array with probs
y_true = [0, 1, 0, 1]
y_pred = [0.2, 0.6, 0.01, 0.8]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Binary: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Binary: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Binary: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Binary: Could not compute Precision correctly')
def test_metrics_08_evaluate_multiclass_classification_1D_1D_array_if_continuous(self):
""" Multiclass: test y_true is 1D and y_pred is 1D array """
# Raises error since, metric is classification metric and y_true is continues
y_true = [2.5, 0.1, 1.1, 2.2]
y_pred = [2.5, 0.1, 1.2, 2.2]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(r, 1)
y_true = [12, 12, 12, 12]
y_pred = [12.5, 12.5, 12.5, 12.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(r, 0)
y_true = [12.5, 12.5, 12.5, 12.5]
y_pred = [12, 12, 12, 12]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(r, 0)
y_true = [12.5, 11.5, 10.5, 19.5]
y_pred = [12.5, 11.5, 10.5, 19.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(r, 1)
y_true = [12.5, 11.5, 0., 1e1]
y_pred = [12.5, 11.5, 10.5, 19.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(r, .5)
# F1 SCORE -----------------------------------------------------------------------------
y_true = [2.5, 0.1, 1.1, 2.2]
y_pred = [2.5, 0.1, 1.2, 2.2]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(r, 1)
y_true = [12, 12, 12, 12]
y_pred = [12.5, 12.5, 12.5, 12.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(r, 0)
y_true = [12.5, 12.5, 12.5, 12.5]
y_pred = [12, 12, 12, 12]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(r, 0)
y_true = [12.5, 12.5, 12.5, 12.5]
y_pred = [12.5, 12.5, 12.5, 12.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(r, 1)
# RECALL -----------------------------------------------------------------------------
y_true = [2.5, 0.1, 1.1, 2.2]
y_pred = [2.5, 0.1, 1.2, 2.2]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(r, 1)
y_true = [12, 12, 12, 12]
y_pred = [12.5, 12.5, 12.5, 12.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(r, 0)
y_true = [12.5, 12.5, 12.5, 12.5]
y_pred = [12, 12, 12, 12]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(r, 0)
y_true = [12.5, 12.5, 12.5, 12.5]
y_pred = [12.5, 12.5, 12.5, 12.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(r, 1)
# PRECISION -----------------------------------------------------------------------------
y_true = [2.5, 0.1, 1.1, 2.2]
y_pred = [2.5, 0.1, 1.2, 2.2]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(r, 1)
y_true = [12, 12, 12, 12]
y_pred = [12.5, 12.5, 12.5, 12.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(r, 0)
y_true = [12.5, 12.5, 12.5, 12.5]
y_pred = [12, 12, 12, 12]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(r, 0)
y_true = [12.5, 12.5, 12.5, 12.5]
y_pred = [12.5, 12.5, 12.5, 12.5]
r = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(r, 1)
def test_metrics_09_evaluate_multiclass_classification_2D_2D_array(self):
"""Multiclass: test y_true is 2D and y_pred is 2D array"""
y_true = [[1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 1]]
y_pred = [[1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 1]]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Multiclass: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Multiclass: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Multiclass: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Multiclass: Could not compute Precision correctly')
def test_metrics_10_evaluate_multiclass_classification_2D_2D_array_probs(self):
"""Multiclass: test y_true is 2D and y_pred is 2D array as float values"""
y_true = [[0.5, -2, 2], [0.1, 1.5, 0.1], [-1.5, 1.2, 0.4], [-2.5, 1, 2.6]]
y_pred = [[0.5, -2, 2], [0.1, 1.5, 0.1], [-1.5, 1.2, 0.4], [-2.5, 1, 2.6]]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Multiclass: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Multiclass: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Multiclass: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Multiclass: Could not compute Precision correctly')
def test_metrics_11_evaluate_multiclass_classification_1D_2D_array_probs(self):
""" Multiclass: test y_true is 1D and y_pred is 2D array as float values"""
y_true = [2, 0, 1, 2]
y_pred = [[0.5, -2, 2], [2.1, 1.5, 0.1], [-1.5, 1.2, 0.4], [-2.5, 1, 2.6]]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Multiclass: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Multiclass: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Multiclass: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Multiclass: Could not compute Precision correctly')
def test_metrics_12_evaluate_multiclass_classification_1D_1D_array(self):
"""Multiclass: test y_true is 1D and y_pred is 1D array"""
y_true = [2, 0, 1, 2]
y_pred = [2, 0, 1, 2]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Multiclass: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Multiclass: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Multiclass: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Multiclass: Could not compute Precision correctly')
def test_metrics_13_evaluate_multiclass_classification_1D_1D_array_strings(self):
""" Multiclass: Test both are 1D array with labels as string """
y_true = ['0', '1', '2', '1']
y_pred = ['0', '1', '2', '1']
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 1, 'Multiclass: Could not compute Accuracy correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE)
self.assertEqual(result, 1, 'Multiclass: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL)
self.assertEqual(result, 1, 'Multiclass: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION)
self.assertEqual(result, 1, 'Multiclass: Could not compute Precision correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE, average='samples')
self.assertEqual(result, 1, 'Multiclass: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL, average='samples')
self.assertEqual(result, 1, 'Multiclass: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION, average='samples')
self.assertEqual(result, 1, 'Multiclass: Could not compute Precision correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.F1_SCORE, average='macro')
self.assertEqual(result, 1, 'Multiclass: Could not compute F1 Score correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.RECALL, average='macro')
self.assertEqual(result, 1, 'Multiclass: Could not compute Recall correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.PRECISION, average='macro')
self.assertEqual(result, 1, 'Multiclass: Could not compute Precision correctly')
def test_metrics_14_evaluate_regression_1D_1D_array_strings(self):
""" Multiclass: Test both are 1D array with labels as string """
# Test exception if y_true and y_pred is in string type and metric is one of regression metrics
y_true = ['0', '1', '2', '1']
y_pred = ['0', '1', '2', '1']
with self.assertRaises(FedbiomedMetricError):
self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.MEAN_SQUARE_ERROR)
with self.assertRaises(FedbiomedMetricError):
self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.MEAN_ABSOLUTE_ERROR)
with self.assertRaises(FedbiomedMetricError):
self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.EXPLAINED_VARIANCE)
y_true = [12, 13, 14, 15]
y_pred = [11, 12, 13, 14]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.MEAN_SQUARE_ERROR)
self.assertEqual(result, 1, 'Could not compute MEAN_SQUARE_ERROR correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.MEAN_ABSOLUTE_ERROR)
self.assertEqual(result, 1, 'Could not compute MEAN_ABSOLUTE_ERROR correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.EXPLAINED_VARIANCE)
self.assertEqual(result, 1, 'Could not compute EXPLAINED_VARIANCE correctly')
# Should also calculate classification based metrics
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
self.assertEqual(result, 0, 'Could not compute ACCURACY for regression input correctly')
# Test multi output
y_true = [[12, 12], [13, 13], [14, 14], [15, 15]]
y_pred = [[11, 11], [12, 12], [13, 13], [14, 14]]
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.MEAN_SQUARE_ERROR)
self.assertListEqual(list(result), [1, 1], 'Could not compute MEAN_SQUARE_ERROR correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.MEAN_ABSOLUTE_ERROR)
self.assertListEqual(list(result), [1, 1], 'Could not compute MEAN_ABSOLUTE_ERROR correctly')
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.EXPLAINED_VARIANCE)
self.assertListEqual(list(result), [1, 1], 'Could not compute EXPLAINED_VARIANCE correctly')
# Test missmatch shape for regression metrics should raise exception
y_true = [[12, 12], [13, 13], [14, 14], [15, 15]]
y_pred = [11, 12, 13, 14]
with self.assertRaises(FedbiomedMetricError):
self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.MEAN_SQUARE_ERROR)
def test_metrics_15_evaluate_shape_errors(self):
""" Multiclass: Testing error due to y_true and y_pred shapes """
y_true = [[0, 1], [0, 1], [0, 1], [0, 1]]
y_pred = [[0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0]]
with self.assertRaises(FedbiomedMetricError):
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
y_true = [[0, 1], [0, 1], ]
y_pred = [[[0, 1], [0, 1]], [[0, 1], [0, 1]]]
with self.assertRaises(FedbiomedMetricError):
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
y_true = [[[0, 1], [0, 1]], [[0, 1], [0, 1]]]
y_pred = [[0, 1], [0, 1]]
with self.assertRaises(FedbiomedMetricError):
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
y_true = [[0, 1], [0, 1], [0, 1], [0, 1]]
y_pred = [[0, 1], [0, 1]]
with self.assertRaises(FedbiomedMetricError):
self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
def test_metrics_16_evaluate_multiclass_classification_1D_1D_array_strings_errors(self):
"""Test if predicted values and true values are not of same type"""
y_true = ['0', '1', '2', '1']
y_pred = [0, 1, 2, 1]
with self.assertRaises(FedbiomedMetricError):
result = self.metrics.evaluate(y_true, y_pred, metric=MetricTypes.ACCURACY)
@patch('fedbiomed.common.metrics.metrics.accuracy_score')
@patch('fedbiomed.common.metrics.metrics.precision_score')
@patch('fedbiomed.common.metrics.metrics.recall_score')
@patch('fedbiomed.common.metrics.metrics.f1_score')
@patch('fedbiomed.common.metrics.metrics.mean_squared_error')
@patch('fedbiomed.common.metrics.metrics.mean_absolute_error')
@patch('fedbiomed.common.metrics.metrics.explained_variance_score')
def test_metrics_17_try_expect_blocks_of_eval_functions(self,
patch_exp_variance,
patch_mean_abs,
patch_mean_sq,
patch_f1_score,
patch_recall_score,
patch_precision_score,
patch_accuracy):
patch_accuracy.side_effect = Exception
patch_precision_score.side_effect = Exception
patch_recall_score.side_effect = Exception
patch_f1_score.side_effect = Exception
patch_mean_sq.side_effect = Exception
patch_mean_abs.side_effect = Exception
patch_exp_variance.side_effect = Exception
y_true = np.array([1, 2, 3])
y_pred = np.array([1, 2, 3])
with self.assertRaises(FedbiomedMetricError):
self.metrics.accuracy(y_true, y_pred)
with self.assertRaises(FedbiomedMetricError):
self.metrics.f1_score(y_true, y_pred)
with self.assertRaises(FedbiomedMetricError):
self.metrics.recall(y_true, y_pred)
with self.assertRaises(FedbiomedMetricError):
self.metrics.precision(y_true, y_pred)
y_true = np.array([12, 13, 14, 15])
y_pred = np.array([11, 12, 13, 14])
with self.assertRaises(FedbiomedMetricError):
self.metrics.explained_variance(y_true, y_pred)
with self.assertRaises(FedbiomedMetricError):
self.metrics.mae(y_true, y_pred)
with self.assertRaises(FedbiomedMetricError):
self.metrics.mse(y_true, y_pred)
class TestMetricTypes(unittest.TestCase):
""" Testing Enum Class MetricTypes """
def setUp(self) -> None:
pass
def tearDown(self) -> None:
pass
def test_metric_type_01_metric_category(self):
""" Testing the method metric category """
mc = MetricTypes.ACCURACY.metric_category()
self.assertEqual(mc, _MetricCategory.CLASSIFICATION_LABELS)
mc = MetricTypes.PRECISION.metric_category()
self.assertEqual(mc, _MetricCategory.CLASSIFICATION_LABELS)
mc = MetricTypes.RECALL.metric_category()
self.assertEqual(mc, _MetricCategory.CLASSIFICATION_LABELS)
mc = MetricTypes.F1_SCORE.metric_category()
self.assertEqual(mc, _MetricCategory.CLASSIFICATION_LABELS)
mc = MetricTypes.MEAN_SQUARE_ERROR.metric_category()
self.assertEqual(mc, _MetricCategory.REGRESSION)
mc = MetricTypes.MEAN_ABSOLUTE_ERROR.metric_category()
self.assertEqual(mc, _MetricCategory.REGRESSION)
mc = MetricTypes.EXPLAINED_VARIANCE.metric_category()
self.assertEqual(mc, _MetricCategory.REGRESSION)
def test_metric_type_02_get_all_metrics(self):
""" Testing method getting all metrics in MetricTypes """
all = MetricTypes.get_all_metrics()
expected = ['ACCURACY', 'F1_SCORE', 'PRECISION', 'RECALL', 'MEAN_SQUARE_ERROR',
'MEAN_ABSOLUTE_ERROR', 'EXPLAINED_VARIANCE']
self.assertListEqual(expected, all)
def test_metric_type_02_get_metric_type_by_name(self):
""" Testing method getting all metrics in MetricTypes """
mtype = MetricTypes.get_metric_type_by_name('ACCURACY')
self.assertEqual(mtype, MetricTypes.ACCURACY)
mtype = MetricTypes.get_metric_type_by_name('PRECISION')
self.assertEqual(mtype, MetricTypes.PRECISION)
mtype = MetricTypes.get_metric_type_by_name('RECALL')
self.assertEqual(mtype, MetricTypes.RECALL)
mtype = MetricTypes.get_metric_type_by_name('F1_SCORE')
self.assertEqual(mtype, MetricTypes.F1_SCORE)
mtype = MetricTypes.get_metric_type_by_name('EXPLAINED_VARIANCE')
self.assertEqual(mtype, MetricTypes.EXPLAINED_VARIANCE)
mtype = MetricTypes.get_metric_type_by_name('MEAN_SQUARE_ERROR')
self.assertEqual(mtype, MetricTypes.MEAN_SQUARE_ERROR)
mtype = MetricTypes.get_metric_type_by_name('MEAN_ABSOLUTE_ERROR')
self.assertEqual(mtype, MetricTypes.MEAN_ABSOLUTE_ERROR)
mtype = MetricTypes.get_metric_type_by_name('WRONG_NAME')
self.assertIsNone(mtype)
if __name__ == '__main__':
unittest.main()