forked from fedbiomed/fedbiomed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_np_dataloader.py
244 lines (196 loc) · 9.26 KB
/
test_np_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import functools
import unittest
import logging
import numpy as np
from fedbiomed.common.exceptions import FedbiomedValueError, FedbiomedTypeError
from fedbiomed.common.data import NPDataLoader
class TestNPDataLoader(unittest.TestCase):
def setUp(self):
self.len = 7
self.X = np.arange(7)[:, np.newaxis]
logging.disable('CRITICAL')
def tearDown(self) -> None:
logging.disable(logging.NOTSET)
def assertIterableEqual(self, it1, it2):
self.assertListEqual([x for x in it1], [x for x in it2])
def assertNPArrayEqual(self, arr1, arr2):
self.assertIterableEqual(arr1.flatten(), arr2.flatten())
def iterate_and_assert(self, batch_size, n_epochs, drop_last=False):
dataloader = NPDataLoader(dataset=self.X,
target=self.X,
batch_size=batch_size,
drop_last=drop_last)
num_batches_per_epoch = self.len//batch_size
if not drop_last and self.len % batch_size > 0:
num_batches_per_epoch += 1
self.assertEqual(num_batches_per_epoch, len(dataloader))
outcome = list()
for epoch in range(n_epochs):
for data, target in dataloader:
outcome.append(data)
self.assertEqual(len(outcome), num_batches_per_epoch*n_epochs)
remainder = self.len % batch_size
if remainder > 0 and drop_last:
expected_sum = self.X[:-remainder].sum()
else:
expected_sum = self.X.sum()
out_sum = functools.reduce(lambda x, y: x + y.sum(), outcome, 0)
self.assertEqual(out_sum, expected_sum*n_epochs)
if remainder == 0:
self.assertNPArrayEqual(outcome[-1], self.X[-batch_size:])
else:
if not drop_last:
self.assertNPArrayEqual(outcome[-1], self.X[-remainder:])
else:
self.assertNPArrayEqual(outcome[-1], self.X[-batch_size-remainder:-remainder])
def test_npdataloader_00_creation(self):
_ = NPDataLoader(dataset=self.X,
target=self.X) # Base case that should not raise errors
with self.assertRaises(FedbiomedTypeError):
_ = NPDataLoader(dataset='wrong-type',
target=self.X)
with self.assertRaises(FedbiomedTypeError):
_ = NPDataLoader(dataset=self.X,
target='wrong-type')
# test that inconsistent lengths raise ValueError
with self.assertRaises(FedbiomedValueError):
_ = NPDataLoader(dataset=self.X,
target=self.X[:2, :])
# test that 1-d targets are handled correctly
loader = NPDataLoader(dataset=np.squeeze(self.X),
target=np.squeeze(self.X))
self.assertIterableEqual(loader.dataset.shape, loader.target.shape)
# test that wrong dataset shape raises ValueError
with self.assertRaises(FedbiomedValueError):
_ = NPDataLoader(dataset=self.X[:, np.newaxis],
target=self.X)
with self.assertRaises(FedbiomedTypeError):
_ = NPDataLoader(dataset=self.X,
target=self.X,
batch_size='wrong-type')
with self.assertRaises(FedbiomedValueError):
_ = NPDataLoader(dataset=self.X,
target=self.X,
batch_size=-1)
with self.assertRaises(FedbiomedTypeError):
_ = NPDataLoader(dataset=self.X,
target=self.X,
drop_last='wrong-type')
with self.assertRaises(FedbiomedTypeError):
_ = NPDataLoader(dataset=self.X,
target=self.X,
shuffle='wrong-type')
with self.assertRaises(FedbiomedTypeError):
_ = NPDataLoader(dataset=self.X,
target=self.X,
random_seed='wrong-type')
# ensure that an unknown argument raises TypeError (this is used in SKLearnDataManager.split)
with self.assertRaises(TypeError):
_ = NPDataLoader(dataset=self.X,
target=self.X,
unknown_argument='unknown')
def test_npdataloader_01_iteration(self):
# scenario: batch_size=1 and 1 epoch
self.iterate_and_assert(1, 1, drop_last=False)
# scenario: batch_size=full dataset and 1 epoch
self.iterate_and_assert(self.len, 1, drop_last=False)
# scenario: batch_size=3 and 1 epoch
self.iterate_and_assert(3, 1, drop_last=False)
# same scenarios, but 3 epochs
self.iterate_and_assert(1, 3, drop_last=False)
self.iterate_and_assert(self.len, 3, drop_last=False)
self.iterate_and_assert(3, 3, drop_last=False)
# same as initial scenarios, but drop_last=True
self.iterate_and_assert(1, 1, drop_last=True)
self.iterate_and_assert(self.len, 1, drop_last=True)
self.iterate_and_assert(3, 1, drop_last=True)
# same as initial scenarios, but 3 epochs and drop_last=True
self.iterate_and_assert(1, 3, drop_last=True)
self.iterate_and_assert(self.len, 3, drop_last=True)
self.iterate_and_assert(3, 3, drop_last=True)
# test iteration with targets
batch_size = 2
dataloader = NPDataLoader(dataset=self.X,
target=3.*self.X + 1.,
batch_size=batch_size)
num_batches_per_epoch = self.len // batch_size + 1 # drop_last is False
n_epochs = 2
outcome = list()
for epoch in range(n_epochs):
for data, target in dataloader:
outcome.append((data, target))
self.assertEqual(len(outcome), num_batches_per_epoch*n_epochs)
expected_data_sum = self.X.sum()
data_sum = functools.reduce(lambda x, y: x + y[0].sum(), outcome, 0)
self.assertEqual(data_sum, expected_data_sum * n_epochs)
expected_target_sum = (3.*self.X + 1).sum()
target_sum = functools.reduce(lambda x, y: x + y[1].sum(), outcome, 0)
self.assertEqual(target_sum, expected_target_sum * n_epochs)
def test_npdataloader_02_shuffle(self):
dataloader = NPDataLoader(dataset=self.X,
target=self.X,
batch_size=1,
shuffle=True,
random_seed=42)
outcome = list()
for data, target in dataloader:
outcome.append(data)
self.assertTrue(any([x != y for x, y in zip(outcome, self.X)]))
# Assert that iterating a second time yields another shuffling
second_epoch = list()
for data, target in dataloader:
second_epoch.append(data)
self.assertTrue(any([x != y for x, y in zip(outcome, second_epoch)]))
def test_npdataloader_03_target(self):
dataloader = NPDataLoader(dataset=self.X,
target=self.X,
batch_size=1,
random_seed=42)
for epoch in range(2):
for data, target in dataloader:
self.assertEqual(data, target)
dataloader = NPDataLoader(dataset=self.X,
target=self.X,
batch_size=3,
random_seed=42)
for epoch in range(2):
for data, target in dataloader:
self.assertNPArrayEqual(data, target)
dataloader = NPDataLoader(dataset=self.X,
target=self.X,
batch_size=3,
drop_last=True,
random_seed=42)
for epoch in range(2):
for data, target in dataloader:
self.assertNPArrayEqual(data, target)
dataloader = NPDataLoader(dataset=self.X,
target=self.X,
batch_size=3,
drop_last=True,
shuffle=True,
random_seed=42)
for epoch in range(2):
for data, target in dataloader:
self.assertNPArrayEqual(data, target)
def test_npdataloader_04_empty(self):
"""Test that NPDataLoader correctly handles empty arrays.
The behaviour for empty arrays is:
- NPDataLoader should not fail
- The iterator should immediately raise StopIteration
- len should be 0
"""
dataloader = NPDataLoader(dataset=np.array([]),
target=np.array([]),
batch_size=2,
shuffle=True,
drop_last=True)
for epoch in range(2):
count = 0
for i, (_, _) in enumerate(dataloader):
count += 1
self.assertEqual(count, 0)
self.assertEqual(epoch, 1)
self.assertEqual(len(dataloader), 0)
if __name__ == '__main__': # pragma: no cover
unittest.main()