-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday13.py
93 lines (65 loc) · 2.39 KB
/
day13.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Advent of Code 2024, Day 13
# (c) blu3r4y
from collections import namedtuple
from functools import cache, partial
from aocd.models import Puzzle
from funcy import print_calls, print_durations
from parse import parse
from sympy import Eq, lambdify, solve, symbols
COST_A, COST_B = 3, 1
INC = 10000000000000
Point = namedtuple("Point", ["x", "y"])
Game = namedtuple("Game", ["a", "b", "prize"])
@print_calls
@print_durations(unit="ms")
def part1(games):
return compute_costs(games)
@print_calls
@print_durations(unit="ms")
def part2(games):
games = [Game(g.a, g.b, Point(g.prize.x + INC, g.prize.y + INC)) for g in games]
return compute_costs(games)
def compute_costs(games):
costs = 0
get_n, get_m = generate_solvers()
for game in games:
n, m = get_n(game), get_m(game)
if n is not None and m is not None:
costs += COST_A * n + COST_B * m
return costs
def load(data):
blocks = data.split("\n\n")
games = []
for block in blocks:
a, b, p = block.splitlines()
ax, ay = parse("Button A: X+{:d}, Y+{:d}", a)
bx, by = parse("Button B: X+{:d}, Y+{:d}", b)
px, py = parse("Prize: X={:d}, Y={:d}", p)
game = Game(Point(ax, ay), Point(bx, by), Point(px, py))
games.append(game)
return games
@cache
def generate_solvers():
px, py, ax, ay, bx, by, n, m = symbols("px py ax ay bx by n m", integer=True)
eq = [Eq(px, n * ax + m * bx), Eq(py, n * ay + m * by)]
sol = solve(eq, (n, m), dict=True, integer=True)
assert len(sol) == 1
def _compute(g, fn):
result = fn(g.prize.x, g.prize.y, g.a.x, g.a.y, g.b.x, g.b.y)
return int(result) if result.is_integer() and result >= 0 else None
_lambda_n = lambdify([px, py, ax, ay, bx, by], sol[0][n], modules="math")
_lambda_m = lambdify([px, py, ax, ay, bx, by], sol[0][m], modules="math")
# prepare convenience functions to compute n and m for a given game
_compute_n = partial(_compute, fn=_lambda_n)
_compute_m = partial(_compute, fn=_lambda_m)
return _compute_n, _compute_m
if __name__ == "__main__":
puzzle = Puzzle(year=2024, day=13)
# cache the solvers (static, regardless of input)
generate_solvers()
ans1 = part1(load(puzzle.input_data))
assert ans1 == 30973
puzzle.answer_a = ans1
ans2 = part2(load(puzzle.input_data))
assert ans2 == 95688837203288
puzzle.answer_b = ans2