Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[syzbot] INFO: trying to register non-static key in l2cap_sock_teardown_cb #5

Open
tedd-an opened this issue Apr 12, 2021 · 0 comments

Comments

@tedd-an
Copy link
Contributor

tedd-an commented Apr 12, 2021

Hello,

syzbot found the following issue on:

HEAD commit: 3db1a3f Merge tag 'staging-5.11-rc1' of git://git.kernel...
git tree: net-next
console output: https://syzkaller.appspot.com/x/log.txt?x=15dccfb7500000
kernel config: https://syzkaller.appspot.com/x/.config?x=2ae878fbf640b72b
dashboard link: https://syzkaller.appspot.com/bug?extid=a41dfef1d2e04910eb2e
compiler: gcc (GCC) 10.1.0-syz 20200507

Unfortunately, I don't have any reproducer for this issue yet.

IMPORTANT: if you fix the issue, please add the following tag to the commit:
Reported-by: [email protected]

INFO: trying to register non-static key.
the code is fine but needs lockdep annotation.
turning off the locking correctness validator.
CPU: 0 PID: 11241 Comm: kworker/0:9 Not tainted 5.10.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events l2cap_chan_timeout
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x107/0x163 lib/dump_stack.c:120
assign_lock_key kernel/locking/lockdep.c:935 [inline]
register_lock_class+0xf1b/0x10e0 kernel/locking/lockdep.c:1247
__lock_acquire+0xfc/0x58e0 kernel/locking/lockdep.c:4711
lock_acquire kernel/locking/lockdep.c:5437 [inline]
lock_acquire+0x29d/0x780 kernel/locking/lockdep.c:5402
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline]
_raw_spin_lock_bh+0x2f/0x40 kernel/locking/spinlock.c:175
spin_lock_bh include/linux/spinlock.h:359 [inline]
lock_sock_nested+0x3b/0x110 net/core/sock.c:3049
l2cap_sock_teardown_cb+0xa1/0x660 net/bluetooth/l2cap_sock.c:1520
l2cap_chan_del+0xbc/0xaa0 net/bluetooth/l2cap_core.c:618
l2cap_chan_close+0x1bc/0xaf0 net/bluetooth/l2cap_core.c:823
l2cap_chan_timeout+0x17e/0x2f0 net/bluetooth/l2cap_core.c:436
process_one_work+0x868/0x15c0 kernel/workqueue.c:2275
worker_thread+0x64c/0x1120 kernel/workqueue.c:2421
kthread+0x3b1/0x4a0 kernel/kthread.c:292
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:296
==================================================================
BUG: KASAN: slab-out-of-bounds in l2cap_sock_teardown_cb+0x5c9/0x660 net/bluetooth/l2cap_sock.c:1522
Read of size 8 at addr ffff8880688f04c8 by task kworker/0:9/11241

CPU: 0 PID: 11241 Comm: kworker/0:9 Not tainted 5.10.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events l2cap_chan_timeout
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x107/0x163 lib/dump_stack.c:120
print_address_description.constprop.0.cold+0xae/0x4c8 mm/kasan/report.c:385
__kasan_report mm/kasan/report.c:545 [inline]
kasan_report.cold+0x1f/0x37 mm/kasan/report.c:562
l2cap_sock_teardown_cb+0x5c9/0x660 net/bluetooth/l2cap_sock.c:1522
l2cap_chan_del+0xbc/0xaa0 net/bluetooth/l2cap_core.c:618
l2cap_chan_close+0x1bc/0xaf0 net/bluetooth/l2cap_core.c:823
l2cap_chan_timeout+0x17e/0x2f0 net/bluetooth/l2cap_core.c:436
process_one_work+0x868/0x15c0 kernel/workqueue.c:2275
worker_thread+0x64c/0x1120 kernel/workqueue.c:2421
kthread+0x3b1/0x4a0 kernel/kthread.c:292
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:296

Allocated by task 20015:
kasan_save_stack+0x1b/0x40 mm/kasan/common.c:48
kasan_set_track mm/kasan/common.c:56 [inline]
__kasan_kmalloc.constprop.0+0xc2/0xd0 mm/kasan/common.c:461
kmalloc include/linux/slab.h:557 [inline]
kzalloc include/linux/slab.h:682 [inline]
ops_init+0xfb/0x4a0 net/core/net_namespace.c:142
setup_net+0x2de/0x850 net/core/net_namespace.c:342
copy_net_ns+0x376/0x7b0 net/core/net_namespace.c:483
create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xbd/0x230 kernel/nsproxy.c:226
ksys_unshare+0x445/0x8e0 kernel/fork.c:2957
__do_sys_unshare kernel/fork.c:3025 [inline]
__se_sys_unshare kernel/fork.c:3023 [inline]
__x64_sys_unshare+0x2d/0x40 kernel/fork.c:3023
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xa9

Last potentially related work creation:
kasan_save_stack+0x1b/0x40 mm/kasan/common.c:48
kasan_record_aux_stack+0xc0/0xf0 mm/kasan/generic.c:343
__call_rcu kernel/rcu/tree.c:2965 [inline]
call_rcu+0xbb/0x730 kernel/rcu/tree.c:3038
netlink_release+0xe86/0x1e10 net/netlink/af_netlink.c:802
__sock_release+0xcd/0x280 net/socket.c:597
sock_close+0x18/0x20 net/socket.c:1256
__fput+0x285/0x930 fs/file_table.c:281
task_work_run+0xdd/0x190 kernel/task_work.c:168
exit_task_work include/linux/task_work.h:30 [inline]
do_exit+0xbbc/0x2c60 kernel/exit.c:823
do_group_exit+0x125/0x310 kernel/exit.c:920
__do_sys_exit_group kernel/exit.c:931 [inline]
__se_sys_exit_group kernel/exit.c:929 [inline]
__x64_sys_exit_group+0x3a/0x50 kernel/exit.c:929
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xa9

The buggy address belongs to the object at ffff8880688f0000
which belongs to the cache kmalloc-2k of size 2048
The buggy address is located 1224 bytes inside of
2048-byte region [ffff8880688f0000, ffff8880688f0800)
The buggy address belongs to the page:
page:000000000a58198a refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x688f0
head:000000000a58198a order:3 compound_mapcount:0 compound_pincount:0
flags: 0xfff00000010200(slab|head)
raw: 00fff00000010200 dead000000000100 dead000000000122 ffff888011042000
raw: 0000000000000000 0000000000080008 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
ffff8880688f0380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff8880688f0400: 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8880688f0480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
                                              ^
ffff8880688f0500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8880688f0580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================

This report is generated by a bot. It may contain errors.
See https://goo.gl/tpsmEJ for more information about syzbot.
syzbot engineers can be reached at [email protected].

syzbot will keep track of this issue. See:
https://goo.gl/tpsmEJ#status for how to communicate with syzbot.

@tedd-an tedd-an changed the title INFO: trying to register non-static key in l2cap_sock_teardown_cb [syzbot] INFO: trying to register non-static key in l2cap_sock_teardown_cb Apr 12, 2021
BluezTestBot pushed a commit that referenced this issue Jun 30, 2021
We can deadlock when rmmod'ing the driver or going through firmware
reset, because the cfg80211_unregister_wdev() has to bring down the link
for us, ... which then grab the same wiphy lock.

nl80211_del_interface() already handles a very similar case, with a nice
description:

        /*
         * We hold RTNL, so this is safe, without RTNL opencount cannot
         * reach 0, and thus the rdev cannot be deleted.
         *
         * We need to do it for the dev_close(), since that will call
         * the netdev notifiers, and we need to acquire the mutex there
         * but don't know if we get there from here or from some other
         * place (e.g. "ip link set ... down").
         */
        mutex_unlock(&rdev->wiphy.mtx);
...

Do similarly for mwifiex teardown, by ensuring we bring the link down
first.

Sample deadlock trace:

[  247.103516] INFO: task rmmod:2119 blocked for more than 123 seconds.
[  247.110630]       Not tainted 5.12.4 #5
[  247.115796] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[  247.124557] task:rmmod           state:D stack:    0 pid: 2119 ppid:  2114 flags:0x00400208
[  247.133905] Call trace:
[  247.136644]  __switch_to+0x130/0x170
[  247.140643]  __schedule+0x714/0xa0c
[  247.144548]  schedule_preempt_disabled+0x88/0xf4
[  247.149714]  __mutex_lock_common+0x43c/0x750
[  247.154496]  mutex_lock_nested+0x5c/0x68
[  247.158884]  cfg80211_netdev_notifier_call+0x280/0x4e0 [cfg80211]
[  247.165769]  raw_notifier_call_chain+0x4c/0x78
[  247.170742]  call_netdevice_notifiers_info+0x68/0xa4
[  247.176305]  __dev_close_many+0x7c/0x138
[  247.180693]  dev_close_many+0x7c/0x10c
[  247.184893]  unregister_netdevice_many+0xfc/0x654
[  247.190158]  unregister_netdevice_queue+0xb4/0xe0
[  247.195424]  _cfg80211_unregister_wdev+0xa4/0x204 [cfg80211]
[  247.201816]  cfg80211_unregister_wdev+0x20/0x2c [cfg80211]
[  247.208016]  mwifiex_del_virtual_intf+0xc8/0x188 [mwifiex]
[  247.214174]  mwifiex_uninit_sw+0x158/0x1b0 [mwifiex]
[  247.219747]  mwifiex_remove_card+0x38/0xa0 [mwifiex]
[  247.225316]  mwifiex_pcie_remove+0xd0/0xe0 [mwifiex_pcie]
[  247.231451]  pci_device_remove+0x50/0xe0
[  247.235849]  device_release_driver_internal+0x110/0x1b0
[  247.241701]  driver_detach+0x5c/0x9c
[  247.245704]  bus_remove_driver+0x84/0xb8
[  247.250095]  driver_unregister+0x3c/0x60
[  247.254486]  pci_unregister_driver+0x2c/0x90
[  247.259267]  cleanup_module+0x18/0xcdc [mwifiex_pcie]

Fixes: a05829a ("cfg80211: avoid holding the RTNL when calling the driver")
Cc: [email protected]
Link: https://lore.kernel.org/linux-wireless/[email protected]/
Link: https://lore.kernel.org/linux-wireless/[email protected]/
Reported-by: Maximilian Luz <[email protected]>
Reported-by: [email protected]
Cc: Johannes Berg <[email protected]>
Signed-off-by: Brian Norris <[email protected]>
Tested-by: Maximilian Luz <[email protected]>
Tested-by: Dave Olsthoorn <[email protected]>
Signed-off-by: Kalle Valo <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
BluezTestBot pushed a commit that referenced this issue Nov 16, 2021
A race condition is triggered when usermode control is given to
userspace before the kernel's MSFT query responds, resulting in an
unexpected response to userspace's reset command.

Issue can be observed in btmon:

< HCI Command: Vendor (0x3f|0x001e) plen 2                    #3 [hci0]
        05 01                                            ..
@ USER Open: bt_stack_manage (privileged) version 2.22  {0x0002} [hci0]
< HCI Command: Reset (0x03|0x0003) plen 0                     #4 [hci0]
> HCI Event: Command Complete (0x0e) plen 5                   #5 [hci0]
      Vendor (0x3f|0x001e) ncmd 1
	Status: Command Disallowed (0x0c)
	05                                               .
> HCI Event: Command Complete (0x0e) plen 4                   #6 [hci0]
      Reset (0x03|0x0003) ncmd 2
	Status: Success (0x00)

Reviewed-by: Abhishek Pandit-Subedi <[email protected]>
Reviewed-by: Sonny Sasaka <[email protected]>
Signed-off-by: Jesse Melhuish <[email protected]>
Signed-off-by: Marcel Holtmann <[email protected]>
BluezTestBot pushed a commit that referenced this issue Nov 24, 2021
Convert the netfs helper library to use folios throughout, convert the 9p
and afs filesystems to use folios in their file I/O paths and convert the
ceph filesystem to use just enough folios to compile.

With these changes, afs passes -g quick xfstests.

Changes
=======
ver #5:
 - Got rid of folio_end{io,_read,_write}() and inlined the stuff it does
   instead (Willy decided he didn't want this after all).

ver #4:
 - Fixed a bug in afs_redirty_page() whereby it didn't set the next page
   index in the loop and returned too early.
 - Simplified a check in v9fs_vfs_write_folio_locked()[1].
 - Undid a change to afs_symlink_readpage()[1].
 - Used offset_in_folio() in afs_write_end()[1].
 - Changed from using page_endio() to folio_end{io,_read,_write}()[1].

ver #2:
 - Add 9p foliation.

Signed-off-by: David Howells <[email protected]>
Reviewed-by: Jeff Layton <[email protected]>
Tested-by: Jeff Layton <[email protected]>
Tested-by: Dominique Martinet <[email protected]>
Tested-by: [email protected]
cc: Matthew Wilcox (Oracle) <[email protected]>
cc: Marc Dionne <[email protected]>
cc: Ilya Dryomov <[email protected]>
cc: Dominique Martinet <[email protected]>
cc: [email protected]
cc: [email protected]
cc: [email protected]
cc: [email protected]
Link: https://lore.kernel.org/r/YYKa3bfQZxK5/[email protected]/ [1]
Link: https://lore.kernel.org/r/[email protected]/ # rfc
Link: https://lore.kernel.org/r/162877311459.3085614.10601478228012245108.stgit@warthog.procyon.org.uk/
Link: https://lore.kernel.org/r/162981153551.1901565.3124454657133703341.stgit@warthog.procyon.org.uk/
Link: https://lore.kernel.org/r/163005745264.2472992.9852048135392188995.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163584187452.4023316.500389675405550116.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/163649328026.309189.1124218109373941936.stgit@warthog.procyon.org.uk/ # v4
Link: https://lore.kernel.org/r/163657852454.834781.9265101983152100556.stgit@warthog.procyon.org.uk/ # v5
BluezTestBot pushed a commit that referenced this issue Nov 24, 2021
The exit function fixes a memory leak with the src field as detected by
leak sanitizer. An example of which is:

Indirect leak of 25133184 byte(s) in 207 object(s) allocated from:
    #0 0x7f199ecfe987 in __interceptor_calloc libsanitizer/asan/asan_malloc_linux.cpp:154
    #1 0x55defe638224 in annotated_source__alloc_histograms util/annotate.c:803
    #2 0x55defe6397e4 in symbol__hists util/annotate.c:952
    #3 0x55defe639908 in symbol__inc_addr_samples util/annotate.c:968
    #4 0x55defe63aa29 in hist_entry__inc_addr_samples util/annotate.c:1119
    #5 0x55defe499a79 in hist_iter__report_callback tools/perf/builtin-report.c:182
    #6 0x55defe7a859d in hist_entry_iter__add util/hist.c:1236
    #7 0x55defe49aa63 in process_sample_event tools/perf/builtin-report.c:315
    #8 0x55defe731bc8 in evlist__deliver_sample util/session.c:1473
    #9 0x55defe731e38 in machines__deliver_event util/session.c:1510
    #10 0x55defe732a23 in perf_session__deliver_event util/session.c:1590
    #11 0x55defe72951e in ordered_events__deliver_event util/session.c:183
    #12 0x55defe740082 in do_flush util/ordered-events.c:244
    #13 0x55defe7407cb in __ordered_events__flush util/ordered-events.c:323
    #14 0x55defe740a61 in ordered_events__flush util/ordered-events.c:341
    #15 0x55defe73837f in __perf_session__process_events util/session.c:2390
    #16 0x55defe7385ff in perf_session__process_events util/session.c:2420
    ...

Signed-off-by: Ian Rogers <[email protected]>
Acked-by: Namhyung Kim <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: James Clark <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kajol Jain <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Martin Liška <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 5, 2022
As guest_irq is coming from KVM_IRQFD API call, it may trigger
crash in svm_update_pi_irte() due to out-of-bounds:

crash> bt
PID: 22218  TASK: ffff951a6ad74980  CPU: 73  COMMAND: "vcpu8"
 #0 [ffffb1ba6707fa40] machine_kexec at ffffffff8565b397
 #1 [ffffb1ba6707fa90] __crash_kexec at ffffffff85788a6d
 #2 [ffffb1ba6707fb58] crash_kexec at ffffffff8578995d
 #3 [ffffb1ba6707fb70] oops_end at ffffffff85623c0d
 #4 [ffffb1ba6707fb90] no_context at ffffffff856692c9
 #5 [ffffb1ba6707fbf8] exc_page_fault at ffffffff85f95b51
 #6 [ffffb1ba6707fc50] asm_exc_page_fault at ffffffff86000ace
    [exception RIP: svm_update_pi_irte+227]
    RIP: ffffffffc0761b53  RSP: ffffb1ba6707fd08  RFLAGS: 00010086
    RAX: ffffb1ba6707fd78  RBX: ffffb1ba66d91000  RCX: 0000000000000001
    RDX: 00003c803f63f1c0  RSI: 000000000000019a  RDI: ffffb1ba66db2ab8
    RBP: 000000000000019a   R8: 0000000000000040   R9: ffff94ca41b82200
    R10: ffffffffffffffcf  R11: 0000000000000001  R12: 0000000000000001
    R13: 0000000000000001  R14: ffffffffffffffcf  R15: 000000000000005f
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #7 [ffffb1ba6707fdb8] kvm_irq_routing_update at ffffffffc09f19a1 [kvm]
 #8 [ffffb1ba6707fde0] kvm_set_irq_routing at ffffffffc09f2133 [kvm]
 #9 [ffffb1ba6707fe18] kvm_vm_ioctl at ffffffffc09ef544 [kvm]
    RIP: 00007f143c36488b  RSP: 00007f143a4e04b8  RFLAGS: 00000246
    RAX: ffffffffffffffda  RBX: 00007f05780041d0  RCX: 00007f143c36488b
    RDX: 00007f05780041d0  RSI: 000000004008ae6a  RDI: 0000000000000020
    RBP: 00000000000004e8   R8: 0000000000000008   R9: 00007f05780041e0
    R10: 00007f0578004560  R11: 0000000000000246  R12: 00000000000004e0
    R13: 000000000000001a  R14: 00007f1424001c60  R15: 00007f0578003bc0
    ORIG_RAX: 0000000000000010  CS: 0033  SS: 002b

Vmx have been fix this in commit 3a8b067 (KVM: VMX: Do not BUG() on
out-of-bounds guest IRQ), so we can just copy source from that to fix
this.

Co-developed-by: Yi Liu <[email protected]>
Signed-off-by: Yi Liu <[email protected]>
Signed-off-by: Yi Wang <[email protected]>
Message-Id: <[email protected]>
Cc: [email protected]
Signed-off-by: Paolo Bonzini <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 15, 2022
Andrii Nakryiko says:

====================

Add libbpf support for USDT (User Statically-Defined Tracing) probes.
USDTs is important part of tracing, and BPF, ecosystem, widely used in
mission-critical production applications for observability, performance
analysis, and debugging.

And while USDTs themselves are pretty complicated abstraction built on top of
uprobes, for end-users USDT is as natural a primitive as uprobes themselves.
And thus it's important for libbpf to provide best possible user experience
when it comes to build tracing applications relying on USDTs.

USDTs historically presented a lot of challenges for libbpf's no
compilation-on-the-fly general approach to BPF tracing. BCC utilizes power of
on-the-fly source code generation and compilation using its embedded Clang
toolchain, which was impractical for more lightweight and thus more rigid
libbpf-based approach. But still, with enough diligence and BPF cookies it's
possible to implement USDT support that feels as natural as tracing any
uprobe.

This patch set is the culmination of such effort to add libbpf USDT support
following the spirit and philosophy of BPF CO-RE (even though it's not
inherently relying on BPF CO-RE much, see patch #1 for some notes regarding
this). Each respective patch has enough details and explanations, so I won't
go into details here.

In the end, I think the overall usability of libbpf's USDT support *exceeds*
the status quo set by BCC due to the elimination of awkward runtime USDT
supporting code generation. It also exceeds BCC's capabilities due to the use
of BPF cookie. This eliminates the need to determine a USDT call site (and
thus specifics about how exactly to fetch arguments) based on its *absolute IP
address*, which is impossible with shared libraries if no PID is specified (as
we then just *can't* know absolute IP at which shared library is loaded,
because it might be different for each process). With BPF cookie this is not
a problem as we record "call site ID" directly in a BPF cookie value. This
makes it possible to do a system-wide tracing of a USDT defined in a shared
library. Think about tracing some USDT in libc across any process in the
system, both running at the time of attachment and all the new processes
started *afterwards*. This is a very powerful capability that allows more
efficient observability and tracing tooling.

Once this functionality lands, the plan is to extend libbpf-bootstrap ([0])
with an USDT example. It will also become possible to start converting BCC
tools that rely on USDTs to their libbpf-based counterparts ([1]).

It's worth noting that preliminary version of this code was currently used and
tested in production code running fleet-wide observability toolkit.

Libbpf functionality is broken down into 5 mostly logically independent parts,
for ease of reviewing:
  - patch #1 adds BPF-side implementation;
  - patch #2 adds user-space APIs and wires bpf_link for USDTs;
  - patch #3 adds the most mundate pieces: handling ELF, parsing USDT notes,
    dealing with memory segments, relative vs absolute addresses, etc;
  - patch #4 adds internal ID allocation and setting up/tearing down of
    BPF-side state (spec and IP-to-ID mapping);
  - patch #5 implements x86/x86-64-specific logic of parsing USDT argument
    specifications;
  - patch #6 adds testing of various basic aspects of handling of USDT;
  - patch #7 extends the set of tests with more combinations of semaphore,
    executable vs shared library, and PID filter options.

  [0] https://github.com/libbpf/libbpf-bootstrap
  [1] https://github.com/iovisor/bcc/tree/master/libbpf-tools

v2->v3:
  - fix typos, leave link to systemtap doc, acks, etc (Dave);
  - include sys/sdt.h to avoid extra system-wide package dependencies;
v1->v2:
  - huge high-level comment describing how all the moving parts fit together
    (Alan, Alexei);
  - switched from `__hidden __weak` to `static inline __noinline` for now, as
    there is a bug in BPF linker breaking final BPF object file due to invalid
    .BTF.ext data; I want to fix it separately at which point I'll switch back
    to __hidden __weak again. The fix isn't trivial, so I don't want to block
    on that. Same for __weak variable lookup bug that Henqi reported.
  - various fixes and improvements, addressing other feedback (Alan, Hengqi);

Cc: Alan Maguire <[email protected]>
Cc: Dave Marchevsky <[email protected]>
Cc: Hengqi Chen <[email protected]>
====================

Signed-off-by: Alexei Starovoitov <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 15, 2022
Our detector found a concurrent use-after-free bug when detaching an
NCI device. The main reason for this bug is the unexpected scheduling
between the used delayed mechanism (timer and workqueue).

The race can be demonstrated below:

Thread-1                           Thread-2
                                 | nci_dev_up()
                                 |   nci_open_device()
                                 |     __nci_request(nci_reset_req)
                                 |       nci_send_cmd
                                 |         queue_work(cmd_work)
nci_unregister_device()          |
  nci_close_device()             | ...
    del_timer_sync(cmd_timer)[1] |
...                              | Worker
nci_free_device()                | nci_cmd_work()
  kfree(ndev)[3]                 |   mod_timer(cmd_timer)[2]

In short, the cleanup routine thought that the cmd_timer has already
been detached by [1] but the mod_timer can re-attach the timer [2], even
it is already released [3], resulting in UAF.

This UAF is easy to trigger, crash trace by POC is like below

[   66.703713] ==================================================================
[   66.703974] BUG: KASAN: use-after-free in enqueue_timer+0x448/0x490
[   66.703974] Write of size 8 at addr ffff888009fb7058 by task kworker/u4:1/33
[   66.703974]
[   66.703974] CPU: 1 PID: 33 Comm: kworker/u4:1 Not tainted 5.18.0-rc2 #5
[   66.703974] Workqueue: nfc2_nci_cmd_wq nci_cmd_work
[   66.703974] Call Trace:
[   66.703974]  <TASK>
[   66.703974]  dump_stack_lvl+0x57/0x7d
[   66.703974]  print_report.cold+0x5e/0x5db
[   66.703974]  ? enqueue_timer+0x448/0x490
[   66.703974]  kasan_report+0xbe/0x1c0
[   66.703974]  ? enqueue_timer+0x448/0x490
[   66.703974]  enqueue_timer+0x448/0x490
[   66.703974]  __mod_timer+0x5e6/0xb80
[   66.703974]  ? mark_held_locks+0x9e/0xe0
[   66.703974]  ? try_to_del_timer_sync+0xf0/0xf0
[   66.703974]  ? lockdep_hardirqs_on_prepare+0x17b/0x410
[   66.703974]  ? queue_work_on+0x61/0x80
[   66.703974]  ? lockdep_hardirqs_on+0xbf/0x130
[   66.703974]  process_one_work+0x8bb/0x1510
[   66.703974]  ? lockdep_hardirqs_on_prepare+0x410/0x410
[   66.703974]  ? pwq_dec_nr_in_flight+0x230/0x230
[   66.703974]  ? rwlock_bug.part.0+0x90/0x90
[   66.703974]  ? _raw_spin_lock_irq+0x41/0x50
[   66.703974]  worker_thread+0x575/0x1190
[   66.703974]  ? process_one_work+0x1510/0x1510
[   66.703974]  kthread+0x2a0/0x340
[   66.703974]  ? kthread_complete_and_exit+0x20/0x20
[   66.703974]  ret_from_fork+0x22/0x30
[   66.703974]  </TASK>
[   66.703974]
[   66.703974] Allocated by task 267:
[   66.703974]  kasan_save_stack+0x1e/0x40
[   66.703974]  __kasan_kmalloc+0x81/0xa0
[   66.703974]  nci_allocate_device+0xd3/0x390
[   66.703974]  nfcmrvl_nci_register_dev+0x183/0x2c0
[   66.703974]  nfcmrvl_nci_uart_open+0xf2/0x1dd
[   66.703974]  nci_uart_tty_ioctl+0x2c3/0x4a0
[   66.703974]  tty_ioctl+0x764/0x1310
[   66.703974]  __x64_sys_ioctl+0x122/0x190
[   66.703974]  do_syscall_64+0x3b/0x90
[   66.703974]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[   66.703974]
[   66.703974] Freed by task 406:
[   66.703974]  kasan_save_stack+0x1e/0x40
[   66.703974]  kasan_set_track+0x21/0x30
[   66.703974]  kasan_set_free_info+0x20/0x30
[   66.703974]  __kasan_slab_free+0x108/0x170
[   66.703974]  kfree+0xb0/0x330
[   66.703974]  nfcmrvl_nci_unregister_dev+0x90/0xd0
[   66.703974]  nci_uart_tty_close+0xdf/0x180
[   66.703974]  tty_ldisc_kill+0x73/0x110
[   66.703974]  tty_ldisc_hangup+0x281/0x5b0
[   66.703974]  __tty_hangup.part.0+0x431/0x890
[   66.703974]  tty_release+0x3a8/0xc80
[   66.703974]  __fput+0x1f0/0x8c0
[   66.703974]  task_work_run+0xc9/0x170
[   66.703974]  exit_to_user_mode_prepare+0x194/0x1a0
[   66.703974]  syscall_exit_to_user_mode+0x19/0x50
[   66.703974]  do_syscall_64+0x48/0x90
[   66.703974]  entry_SYSCALL_64_after_hwframe+0x44/0xae

To fix the UAF, this patch adds flush_workqueue() to ensure the
nci_cmd_work is finished before the following del_timer_sync.
This combination will promise the timer is actually detached.

Fixes: 6a2968a ("NFC: basic NCI protocol implementation")
Signed-off-by: Lin Ma <[email protected]>
Reviewed-by: Krzysztof Kozlowski <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 15, 2022
…e name

Add prefix "lc#n" to thermal zones associated with the thermal objects
found on line cards.

For example thermal zone for module #9 located at line card #7 will
have type:
mlxsw-lc7-module9.
And thermal zone for gearbox #3 located at line card #5 will have type:
mlxsw-lc5-gearbox3.

Signed-off-by: Vadim Pasternak <[email protected]>
Reviewed-by: Jiri Pirko <[email protected]>
Signed-off-by: Ido Schimmel <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 15, 2022
Ido Schimmel says:

====================
mlxsw: Preparations for line cards support

Currently, mlxsw registers thermal zones as well as hwmon entries for
objects such as transceiver modules and gearboxes. In upcoming modular
systems, these objects are no longer found on the main board (i.e., slot
0), but on plug-able line cards. This patchset prepares mlxsw for such
systems in terms of hwmon, thermal and cable access support.

Patches #1-#3 gradually prepare mlxsw for transceiver modules access
support for line cards by splitting some of the internal structures and
some APIs.

Patches #4-#5 gradually prepare mlxsw for hwmon support for line cards
by splitting some of the internal structures and augmenting them with a
slot index.

Patches #6-#7 do the same for thermal zones.

Patch #8 selects cooling device for binding to a thermal zone by exact
name match to prevent binding to non-relevant devices.

Patch #9 replaces internal define for thermal zone name length with a
common define.
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 21, 2022
…de-initialization

Add callback functions for line card thermal area initialization and
de-initialization. Each line card is associated with the relevant
thermal area, which may contain thermal zones for cages and gearboxes
found on this line card.

The line card thermal initialization / de-initialization APIs are to be
called when line card is set to active / inactive state by
got_active() / got_inactive() callbacks from line card state machine.

For example thermal zone for module #9 located at line card #7 will
have type:
mlxsw-lc7-module9.
And thermal zone for gearbox #2 located at line card #5 will have type:
mlxsw-lc5-gearbox2.

Signed-off-by: Vadim Pasternak <[email protected]>
Signed-off-by: Ido Schimmel <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 21, 2022
…-initialization

Add callback functions for line card 'hwmon' initialization and
de-initialization. Each line card is associated with the relevant
'hwmon' device, which may contain thermal attributes for the cages
and gearboxes found on this line card.

The line card 'hwmon' initialization / de-initialization APIs are to be
called when line card is set to active / inactive state by
got_active() / got_inactive() callbacks from line card state machine.

For example cage temperature for module #9 located at line card #7 will
be exposed by utility 'sensors' like:
linecard#07
front panel 009:	+32.0C  (crit = +70.0C, emerg = +80.0C)
And temperature for gearbox #3 located at line card #5 will be exposed
like:
linecard#05
gearbox 003:		+41.0C  (highest = +41.0C)

Signed-off-by: Vadim Pasternak <[email protected]>
Signed-off-by: Ido Schimmel <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 21, 2022
Ido Schimmel says:

====================
mlxsw: Line cards status tracking

When a line card is provisioned, netdevs corresponding to the ports
found on the line card are registered. User space can then perform
various logical configurations (e.g., splitting, setting MTU) on these
netdevs.

However, since the line card is not present / powered on (i.e., it is
not in 'active' state), user space cannot access the various components
found on the line card. For example, user space cannot read the
temperature of gearboxes or transceiver modules found on the line card
via hwmon / thermal. Similarly, it cannot dump the EEPROM contents of
these transceiver modules. The above is only possible when the line card
becomes active.

This patchset solves the problem by tracking the status of each line
card and invoking callbacks from interested parties when a line card
becomes active / inactive.

Patchset overview:

Patch #1 adds the infrastructure in the line cards core that allows
users to registers a set of callbacks that are invoked when a line card
becomes active / inactive. To avoid races, if a line card is already
active during registration, the got_active() callback is invoked.

Patches #2-#3 are preparations.

Patch #4 changes the port module core to register a set of callbacks
with the line cards core. See detailed description with examples in the
commit message.

Patches #5-#6 do the same with regards to thermal / hwmon support, so
that user space will be able to monitor the temperature of various
components on the line card when it becomes active.
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 25, 2022
There is possible circular locking dependency detected on event_mutex
(see below logs). This is due to set fail safe mode is done at
dp_panel_read_sink_caps() within event_mutex scope. To break this
possible circular locking, this patch move setting fail safe mode
out of event_mutex scope.

[   23.958078] ======================================================
[   23.964430] WARNING: possible circular locking dependency detected
[   23.970777] 5.17.0-rc2-lockdep-00088-g05241de1f69e #148 Not tainted
[   23.977219] ------------------------------------------------------
[   23.983570] DrmThread/1574 is trying to acquire lock:
[   23.988763] ffffff808423aab0 (&dp->event_mutex){+.+.}-{3:3}, at: msm_dp_displ                                                                             ay_enable+0x58/0x164
[   23.997895]
[   23.997895] but task is already holding lock:
[   24.003895] ffffff808420b280 (&kms->commit_lock[i]/1){+.+.}-{3:3}, at: lock_c                                                                             rtcs+0x80/0x8c
[   24.012495]
[   24.012495] which lock already depends on the new lock.
[   24.012495]
[   24.020886]
[   24.020886] the existing dependency chain (in reverse order) is:
[   24.028570]
[   24.028570] -> #5 (&kms->commit_lock[i]/1){+.+.}-{3:3}:
[   24.035472]        __mutex_lock+0xc8/0x384
[   24.039695]        mutex_lock_nested+0x54/0x74
[   24.044272]        lock_crtcs+0x80/0x8c
[   24.048222]        msm_atomic_commit_tail+0x1e8/0x3d0
[   24.053413]        commit_tail+0x7c/0xfc
[   24.057452]        drm_atomic_helper_commit+0x158/0x15c
[   24.062826]        drm_atomic_commit+0x60/0x74
[   24.067403]        drm_mode_atomic_ioctl+0x6b0/0x908
[   24.072508]        drm_ioctl_kernel+0xe8/0x168
[   24.077086]        drm_ioctl+0x320/0x370
[   24.081123]        drm_compat_ioctl+0x40/0xdc
[   24.085602]        __arm64_compat_sys_ioctl+0xe0/0x150
[   24.090895]        invoke_syscall+0x80/0x114
[   24.095294]        el0_svc_common.constprop.3+0xc4/0xf8
[   24.100668]        do_el0_svc_compat+0x2c/0x54
[   24.105242]        el0_svc_compat+0x4c/0xe4
[   24.109548]        el0t_32_sync_handler+0xc4/0xf4
[   24.114381]        el0t_32_sync+0x178
[   24.118688]
[   24.118688] -> #4 (&kms->commit_lock[i]){+.+.}-{3:3}:
[   24.125408]        __mutex_lock+0xc8/0x384
[   24.129628]        mutex_lock_nested+0x54/0x74
[   24.134204]        lock_crtcs+0x80/0x8c
[   24.138155]        msm_atomic_commit_tail+0x1e8/0x3d0
[   24.143345]        commit_tail+0x7c/0xfc
[   24.147382]        drm_atomic_helper_commit+0x158/0x15c
[   24.152755]        drm_atomic_commit+0x60/0x74
[   24.157323]        drm_atomic_helper_set_config+0x68/0x90
[   24.162869]        drm_mode_setcrtc+0x394/0x648
[   24.167535]        drm_ioctl_kernel+0xe8/0x168
[   24.172102]        drm_ioctl+0x320/0x370
[   24.176135]        drm_compat_ioctl+0x40/0xdc
[   24.180621]        __arm64_compat_sys_ioctl+0xe0/0x150
[   24.185904]        invoke_syscall+0x80/0x114
[   24.190302]        el0_svc_common.constprop.3+0xc4/0xf8
[   24.195673]        do_el0_svc_compat+0x2c/0x54
[   24.200241]        el0_svc_compat+0x4c/0xe4
[   24.204544]        el0t_32_sync_handler+0xc4/0xf4
[   24.209378]        el0t_32_sync+0x174/0x178
[   24.213680] -> #3 (crtc_ww_class_mutex){+.+.}-{3:3}:
[   24.220308]        __ww_mutex_lock.constprop.20+0xe8/0x878
[   24.225951]        ww_mutex_lock+0x60/0xd0
[   24.230166]        modeset_lock+0x190/0x19c
[   24.234467]        drm_modeset_lock+0x34/0x54
[   24.238953]        drmm_mode_config_init+0x550/0x764
[   24.244065]        msm_drm_bind+0x170/0x59c
[   24.248374]        try_to_bring_up_master+0x244/0x294
[   24.253572]        __component_add+0xf4/0x14c
[   24.258057]        component_add+0x2c/0x38
[   24.262273]        dsi_dev_attach+0x2c/0x38
[   24.266575]        dsi_host_attach+0xc4/0x120
[   24.271060]        mipi_dsi_attach+0x34/0x48
[   24.275456]        devm_mipi_dsi_attach+0x28/0x68
[   24.280298]        ti_sn_bridge_probe+0x2b4/0x2dc
[   24.285137]        auxiliary_bus_probe+0x78/0x90
[   24.289893]        really_probe+0x1e4/0x3d8
[   24.294194]        __driver_probe_device+0x14c/0x164
[   24.299298]        driver_probe_device+0x54/0xf8
[   24.304043]        __device_attach_driver+0xb4/0x118
[   24.309145]        bus_for_each_drv+0xb0/0xd4
[   24.313628]        __device_attach+0xcc/0x158
[   24.318112]        device_initial_probe+0x24/0x30
[   24.322954]        bus_probe_device+0x38/0x9c
[   24.327439]        deferred_probe_work_func+0xd4/0xf0
[   24.332628]        process_one_work+0x2f0/0x498
[   24.337289]        process_scheduled_works+0x44/0x48
[   24.342391]        worker_thread+0x1e4/0x26c
[   24.346788]        kthread+0xe4/0xf4
[   24.350470]        ret_from_fork+0x10/0x20
[   24.354683]
[   24.354683]
[   24.354683] -> #2 (crtc_ww_class_acquire){+.+.}-{0:0}:
[   24.361489]        drm_modeset_acquire_init+0xe4/0x138
[   24.366777]        drm_helper_probe_detect_ctx+0x44/0x114
[   24.372327]        check_connector_changed+0xbc/0x198
[   24.377517]        drm_helper_hpd_irq_event+0xcc/0x11c
[   24.382804]        dsi_hpd_worker+0x24/0x30
[   24.387104]        process_one_work+0x2f0/0x498
[   24.391762]        worker_thread+0x1d0/0x26c
[   24.396158]        kthread+0xe4/0xf4
[   24.399840]        ret_from_fork+0x10/0x20
[   24.404053]
[   24.404053] -> #1 (&dev->mode_config.mutex){+.+.}-{3:3}:
[   24.411032]        __mutex_lock+0xc8/0x384
[   24.415247]        mutex_lock_nested+0x54/0x74
[   24.419819]        dp_panel_read_sink_caps+0x23c/0x26c
[   24.425108]        dp_display_process_hpd_high+0x34/0xd4
[   24.430570]        dp_display_usbpd_configure_cb+0x30/0x3c
[   24.436205]        hpd_event_thread+0x2ac/0x550
[   24.440864]        kthread+0xe4/0xf4
[   24.444544]        ret_from_fork+0x10/0x20
[   24.448757]
[   24.448757] -> #0 (&dp->event_mutex){+.+.}-{3:3}:
[   24.455116]        __lock_acquire+0xe2c/0x10d8
[   24.459690]        lock_acquire+0x1ac/0x2d0
[   24.463988]        __mutex_lock+0xc8/0x384
[   24.468201]        mutex_lock_nested+0x54/0x74
[   24.472773]        msm_dp_display_enable+0x58/0x164
[   24.477789]        dp_bridge_enable+0x24/0x30
[   24.482273]        drm_atomic_bridge_chain_enable+0x78/0x9c
[   24.488006]        drm_atomic_helper_commit_modeset_enables+0x1bc/0x244
[   24.494801]        msm_atomic_commit_tail+0x248/0x3d0
[   24.499992]        commit_tail+0x7c/0xfc
[   24.504031]        drm_atomic_helper_commit+0x158/0x15c
[   24.509404]        drm_atomic_commit+0x60/0x74
[   24.513976]        drm_mode_atomic_ioctl+0x6b0/0x908
[   24.519079]        drm_ioctl_kernel+0xe8/0x168
[   24.523650]        drm_ioctl+0x320/0x370
[   24.527689]        drm_compat_ioctl+0x40/0xdc
[   24.532175]        __arm64_compat_sys_ioctl+0xe0/0x150
[   24.537463]        invoke_syscall+0x80/0x114
[   24.541861]        el0_svc_common.constprop.3+0xc4/0xf8
[   24.547235]        do_el0_svc_compat+0x2c/0x54
[   24.551806]        el0_svc_compat+0x4c/0xe4
[   24.556106]        el0t_32_sync_handler+0xc4/0xf4
[   24.560948]        el0t_32_sync+0x174/0x178

Changes in v2:
-- add circular lockiing trace

Fixes: d4aca42 ("drm/msm/dp:  always add fail-safe mode into connector mode list")
Signed-off-by: Kuogee Hsieh <[email protected]>
Reviewed-by: Dmitry Baryshkov <[email protected]>
Patchwork: https://patchwork.freedesktop.org/patch/481396/
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Dmitry Baryshkov <[email protected]>
Signed-off-by: Rob Clark <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2022
While handling PCI errors (AER flow) driver tries to
disable NAPI [napi_disable()] after NAPI is deleted
[__netif_napi_del()] which causes unexpected system
hang/crash.

System message log shows the following:
=======================================
[ 3222.537510] EEH: Detected PCI bus error on PHB#384-PE#800000 [ 3222.537511] EEH: This PCI device has failed 2 times in the last hour and will be permanently disabled after 5 failures.
[ 3222.537512] EEH: Notify device drivers to shutdown [ 3222.537513] EEH: Beginning: 'error_detected(IO frozen)'
[ 3222.537514] EEH: PE#800000 (PCI 0384:80:00.0): Invoking
bnx2x->error_detected(IO frozen)
[ 3222.537516] bnx2x: [bnx2x_io_error_detected:14236(eth14)]IO error detected [ 3222.537650] EEH: PE#800000 (PCI 0384:80:00.0): bnx2x driver reports:
'need reset'
[ 3222.537651] EEH: PE#800000 (PCI 0384:80:00.1): Invoking
bnx2x->error_detected(IO frozen)
[ 3222.537651] bnx2x: [bnx2x_io_error_detected:14236(eth13)]IO error detected [ 3222.537729] EEH: PE#800000 (PCI 0384:80:00.1): bnx2x driver reports:
'need reset'
[ 3222.537729] EEH: Finished:'error_detected(IO frozen)' with aggregate recovery state:'need reset'
[ 3222.537890] EEH: Collect temporary log [ 3222.583481] EEH: of node=0384:80:00.0 [ 3222.583519] EEH: PCI device/vendor: 168e14e4 [ 3222.583557] EEH: PCI cmd/status register: 00100140 [ 3222.583557] EEH: PCI-E capabilities and status follow:
[ 3222.583744] EEH: PCI-E 00: 00020010 012c8da2 00095d5e 00455c82 [ 3222.583892] EEH: PCI-E 10: 10820000 00000000 00000000 00000000 [ 3222.583893] EEH: PCI-E 20: 00000000 [ 3222.583893] EEH: PCI-E AER capability register set follows:
[ 3222.584079] EEH: PCI-E AER 00: 13c10001 00000000 00000000 00062030 [ 3222.584230] EEH: PCI-E AER 10: 00002000 000031c0 000001e0 00000000 [ 3222.584378] EEH: PCI-E AER 20: 00000000 00000000 00000000 00000000 [ 3222.584416] EEH: PCI-E AER 30: 00000000 00000000 [ 3222.584416] EEH: of node=0384:80:00.1 [ 3222.584454] EEH: PCI device/vendor: 168e14e4 [ 3222.584491] EEH: PCI cmd/status register: 00100140 [ 3222.584492] EEH: PCI-E capabilities and status follow:
[ 3222.584677] EEH: PCI-E 00: 00020010 012c8da2 00095d5e 00455c82 [ 3222.584825] EEH: PCI-E 10: 10820000 00000000 00000000 00000000 [ 3222.584826] EEH: PCI-E 20: 00000000 [ 3222.584826] EEH: PCI-E AER capability register set follows:
[ 3222.585011] EEH: PCI-E AER 00: 13c10001 00000000 00000000 00062030 [ 3222.585160] EEH: PCI-E AER 10: 00002000 000031c0 000001e0 00000000 [ 3222.585309] EEH: PCI-E AER 20: 00000000 00000000 00000000 00000000 [ 3222.585347] EEH: PCI-E AER 30: 00000000 00000000 [ 3222.586872] RTAS: event: 5, Type: Platform Error (224), Severity: 2 [ 3222.586873] EEH: Reset without hotplug activity [ 3224.762767] EEH: Beginning: 'slot_reset'
[ 3224.762770] EEH: PE#800000 (PCI 0384:80:00.0): Invoking
bnx2x->slot_reset()
[ 3224.762771] bnx2x: [bnx2x_io_slot_reset:14271(eth14)]IO slot reset initializing...
[ 3224.762887] bnx2x 0384:80:00.0: enabling device (0140 -> 0142) [ 3224.768157] bnx2x: [bnx2x_io_slot_reset:14287(eth14)]IO slot reset
--> driver unload

Uninterruptible tasks
=====================
crash> ps | grep UN
     213      2  11  c000000004c89e00  UN   0.0       0      0  [eehd]
     215      2   0  c000000004c80000  UN   0.0       0      0
[kworker/0:2]
    2196      1  28  c000000004504f00  UN   0.1   15936  11136  wickedd
    4287      1   9  c00000020d076800  UN   0.0    4032   3008  agetty
    4289      1  20  c00000020d056680  UN   0.0    7232   3840  agetty
   32423      2  26  c00000020038c580  UN   0.0       0      0
[kworker/26:3]
   32871   4241  27  c0000002609ddd00  UN   0.1   18624  11648  sshd
   32920  10130  16  c00000027284a100  UN   0.1   48512  12608  sendmail
   33092  32987   0  c000000205218b00  UN   0.1   48512  12608  sendmail
   33154   4567  16  c000000260e51780  UN   0.1   48832  12864  pickup
   33209   4241  36  c000000270cb6500  UN   0.1   18624  11712  sshd
   33473  33283   0  c000000205211480  UN   0.1   48512  12672  sendmail
   33531   4241  37  c00000023c902780  UN   0.1   18624  11648  sshd

EEH handler hung while bnx2x sleeping and holding RTNL lock
===========================================================
crash> bt 213
PID: 213    TASK: c000000004c89e00  CPU: 11  COMMAND: "eehd"
  #0 [c000000004d477e0] __schedule at c000000000c70808
  #1 [c000000004d478b0] schedule at c000000000c70ee0
  #2 [c000000004d478e0] schedule_timeout at c000000000c76dec
  #3 [c000000004d479c0] msleep at c0000000002120cc
  #4 [c000000004d479f0] napi_disable at c000000000a06448
                                        ^^^^^^^^^^^^^^^^
  #5 [c000000004d47a30] bnx2x_netif_stop at c0080000018dba94 [bnx2x]
  #6 [c000000004d47a60] bnx2x_io_slot_reset at c0080000018a551c [bnx2x]
  #7 [c000000004d47b20] eeh_report_reset at c00000000004c9bc
  #8 [c000000004d47b90] eeh_pe_report at c00000000004d1a8
  #9 [c000000004d47c40] eeh_handle_normal_event at c00000000004da64

And the sleeping source code
============================
crash> dis -ls c000000000a06448
FILE: ../net/core/dev.c
LINE: 6702

   6697  {
   6698          might_sleep();
   6699          set_bit(NAPI_STATE_DISABLE, &n->state);
   6700
   6701          while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
* 6702                  msleep(1);
   6703          while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
   6704                  msleep(1);
   6705
   6706          hrtimer_cancel(&n->timer);
   6707
   6708          clear_bit(NAPI_STATE_DISABLE, &n->state);
   6709  }

EEH calls into bnx2x twice based on the system log above, first through
bnx2x_io_error_detected() and then bnx2x_io_slot_reset(), and executes
the following call chains:

bnx2x_io_error_detected()
  +-> bnx2x_eeh_nic_unload()
       +-> bnx2x_del_all_napi()
            +-> __netif_napi_del()

bnx2x_io_slot_reset()
  +-> bnx2x_netif_stop()
       +-> bnx2x_napi_disable()
            +->napi_disable()

Fix this by correcting the sequence of NAPI APIs usage,
that is delete the NAPI after disabling it.

Fixes: 7fa6f34 ("bnx2x: AER revised")
Reported-by: David Christensen <[email protected]>
Tested-by: David Christensen <[email protected]>
Signed-off-by: Manish Chopra <[email protected]>
Signed-off-by: Ariel Elior <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue May 13, 2022
Ido Schimmel says:

====================
mlxsw: Various updates

Patches #1-#3 add missing topology diagrams in selftests and perform
small cleanups.

Patches #4-#5 make small adjustments in QoS configuration. See detailed
description in the commit messages.

Patches #6-#8 reduce the number of background EMAD transactions. The
driver periodically queries the device (via EMAD transactions) about
updates that cannot happen in certain situations. This can negatively
impact the latency of time critical transactions, as the device is busy
processing other transactions.

Before:

 # perf stat -a -e devlink:devlink_hwmsg -- sleep 10

  Performance counter stats for 'system wide':

                452      devlink:devlink_hwmsg

       10.009736160 seconds time elapsed

After:

 # perf stat -a -e devlink:devlink_hwmsg -- sleep 10

  Performance counter stats for 'system wide':

                  0      devlink:devlink_hwmsg

       10.001726333 seconds time elapsed

====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue May 13, 2022
As reported by Alan, the CFI (Call Frame Information) in the VDSO time
routines is incorrect since commit ce7d805 ("powerpc/vdso: Prepare
for switching VDSO to generic C implementation.").

DWARF has a concept called the CFA (Canonical Frame Address), which on
powerpc is calculated as an offset from the stack pointer (r1). That
means when the stack pointer is changed there must be a corresponding
CFI directive to update the calculation of the CFA.

The current code is missing those directives for the changes to r1,
which prevents gdb from being able to generate a backtrace from inside
VDSO functions, eg:

  Breakpoint 1, 0x00007ffff7f804dc in __kernel_clock_gettime ()
  (gdb) bt
  #0  0x00007ffff7f804dc in __kernel_clock_gettime ()
  #1  0x00007ffff7d8872c in clock_gettime@@GLIBC_2.17 () from /lib64/libc.so.6
  #2  0x00007fffffffd960 in ?? ()
  #3  0x00007ffff7d8872c in clock_gettime@@GLIBC_2.17 () from /lib64/libc.so.6
  Backtrace stopped: frame did not save the PC

Alan helpfully describes some rules for correctly maintaining the CFI information:

  1) Every adjustment to the current frame address reg (ie. r1) must be
     described, and exactly at the instruction where r1 changes. Why?
     Because stack unwinding might want to access previous frames.

  2) If a function changes LR or any non-volatile register, the save
     location for those regs must be given. The CFI can be at any
     instruction after the saves up to the point that the reg is
     changed.
     (Exception: LR save should be described before a bl. not after)

  3) If asychronous unwind info is needed then restores of LR and
     non-volatile regs must also be described. The CFI can be at any
     instruction after the reg is restored up to the point where the
     save location is (potentially) trashed.

Fix the inability to backtrace by adding CFI directives describing the
changes to r1, ie. satisfying rule 1.

Also change the information for LR to point to the copy saved on the
stack, not the value in r0 that will be overwritten by the function
call.

Finally, add CFI directives describing the save/restore of r2.

With the fix gdb can correctly back trace and navigate up and down the stack:

  Breakpoint 1, 0x00007ffff7f804dc in __kernel_clock_gettime ()
  (gdb) bt
  #0  0x00007ffff7f804dc in __kernel_clock_gettime ()
  #1  0x00007ffff7d8872c in clock_gettime@@GLIBC_2.17 () from /lib64/libc.so.6
  #2  0x0000000100015b60 in gettime ()
  #3  0x000000010000c8bc in print_long_format ()
  #4  0x000000010000d180 in print_current_files ()
  #5  0x00000001000054ac in main ()
  (gdb) up
  #1  0x00007ffff7d8872c in clock_gettime@@GLIBC_2.17 () from /lib64/libc.so.6
  (gdb)
  #2  0x0000000100015b60 in gettime ()
  (gdb)
  #3  0x000000010000c8bc in print_long_format ()
  (gdb)
  #4  0x000000010000d180 in print_current_files ()
  (gdb)
  #5  0x00000001000054ac in main ()
  (gdb)
  Initial frame selected; you cannot go up.
  (gdb) down
  #4  0x000000010000d180 in print_current_files ()
  (gdb)
  #3  0x000000010000c8bc in print_long_format ()
  (gdb)
  #2  0x0000000100015b60 in gettime ()
  (gdb)
  #1  0x00007ffff7d8872c in clock_gettime@@GLIBC_2.17 () from /lib64/libc.so.6
  (gdb)
  #0  0x00007ffff7f804dc in __kernel_clock_gettime ()
  (gdb)

Fixes: ce7d805 ("powerpc/vdso: Prepare for switching VDSO to generic C implementation.")
Cc: [email protected] # v5.11+
Reported-by: Alan Modra <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Reviewed-by: Segher Boessenkool <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
BluezTestBot pushed a commit that referenced this issue May 24, 2022
Fixes an issue caught by KASAN about use-after-free in mt76_txq_schedule
by protecting mtxq->wcid with rcu_lock between mt76_txq_schedule and
sta_info_[alloc, free].

[18853.876689] ==================================================================
[18853.876751] BUG: KASAN: use-after-free in mt76_txq_schedule+0x204/0xaf8 [mt76]
[18853.876773] Read of size 8 at addr ffffffaf989a2138 by task mt76-tx phy0/883
[18853.876786]
[18853.876810] CPU: 5 PID: 883 Comm: mt76-tx phy0 Not tainted 5.10.100-fix-510-56778d365941-kasan #5 0b01fbbcf41a530f52043508fec2e31a4215

[18853.876840] Call trace:
[18853.876861]  dump_backtrace+0x0/0x3ec
[18853.876878]  show_stack+0x20/0x2c
[18853.876899]  dump_stack+0x11c/0x1ac
[18853.876918]  print_address_description+0x74/0x514
[18853.876934]  kasan_report+0x134/0x174
[18853.876948]  __asan_report_load8_noabort+0x44/0x50
[18853.876976]  mt76_txq_schedule+0x204/0xaf8 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877002]  mt76_txq_schedule_all+0x2c/0x48 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877030]  mt7921_tx_worker+0xa0/0x1cc [mt7921_common f0875ebac9d7b4754e1010549e7db50fbd90a047]
[18853.877054]  __mt76_worker_fn+0x190/0x22c [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877071]  kthread+0x2f8/0x3b8
[18853.877087]  ret_from_fork+0x10/0x30
[18853.877098]
[18853.877112] Allocated by task 941:
[18853.877131]  kasan_save_stack+0x38/0x68
[18853.877147]  __kasan_kmalloc+0xd4/0xfc
[18853.877163]  kasan_kmalloc+0x10/0x1c
[18853.877177]  __kmalloc+0x264/0x3c4
[18853.877294]  sta_info_alloc+0x460/0xf88 [mac80211]
[18853.877410]  ieee80211_prep_connection+0x204/0x1ee0 [mac80211]
[18853.877523]  ieee80211_mgd_auth+0x6c4/0xa4c [mac80211]
[18853.877635]  ieee80211_auth+0x20/0x2c [mac80211]
[18853.877733]  rdev_auth+0x7c/0x438 [cfg80211]
[18853.877826]  cfg80211_mlme_auth+0x26c/0x390 [cfg80211]
[18853.877919]  nl80211_authenticate+0x6d4/0x904 [cfg80211]
[18853.877938]  genl_rcv_msg+0x748/0x93c
[18853.877954]  netlink_rcv_skb+0x160/0x2a8
[18853.877969]  genl_rcv+0x3c/0x54
[18853.877985]  netlink_unicast_kernel+0x104/0x1ec
[18853.877999]  netlink_unicast+0x178/0x268
[18853.878015]  netlink_sendmsg+0x3cc/0x5f0
[18853.878030]  sock_sendmsg+0xb4/0xd8
[18853.878043]  ____sys_sendmsg+0x2f8/0x53c
[18853.878058]  ___sys_sendmsg+0xe8/0x150
[18853.878071]  __sys_sendmsg+0xc4/0x1f4
[18853.878087]  __arm64_compat_sys_sendmsg+0x88/0x9c
[18853.878101]  el0_svc_common+0x1b4/0x390
[18853.878115]  do_el0_svc_compat+0x8c/0xdc
[18853.878131]  el0_svc_compat+0x10/0x1c
[18853.878146]  el0_sync_compat_handler+0xa8/0xcc
[18853.878161]  el0_sync_compat+0x188/0x1c0
[18853.878171]
[18853.878183] Freed by task 10927:
[18853.878200]  kasan_save_stack+0x38/0x68
[18853.878215]  kasan_set_track+0x28/0x3c
[18853.878228]  kasan_set_free_info+0x24/0x48
[18853.878244]  __kasan_slab_free+0x11c/0x154
[18853.878259]  kasan_slab_free+0x14/0x24
[18853.878273]  slab_free_freelist_hook+0xac/0x1b0
[18853.878287]  kfree+0x104/0x390
[18853.878402]  sta_info_free+0x198/0x210 [mac80211]
[18853.878515]  __sta_info_destroy_part2+0x230/0x2d4 [mac80211]
[18853.878628]  __sta_info_flush+0x300/0x37c [mac80211]
[18853.878740]  ieee80211_set_disassoc+0x2cc/0xa7c [mac80211]
[18853.878851]  ieee80211_mgd_deauth+0x4a4/0x10a0 [mac80211]
[18853.878962]  ieee80211_deauth+0x20/0x2c [mac80211]
[18853.879057]  rdev_deauth+0x7c/0x438 [cfg80211]
[18853.879150]  cfg80211_mlme_deauth+0x274/0x414 [cfg80211]
[18853.879243]  cfg80211_mlme_down+0xe4/0x118 [cfg80211]
[18853.879335]  cfg80211_disconnect+0x218/0x2d8 [cfg80211]
[18853.879427]  __cfg80211_leave+0x17c/0x240 [cfg80211]
[18853.879519]  cfg80211_leave+0x3c/0x58 [cfg80211]
[18853.879611]  wiphy_suspend+0xdc/0x200 [cfg80211]
[18853.879628]  dpm_run_callback+0x58/0x408
[18853.879642]  __device_suspend+0x4cc/0x864
[18853.879658]  async_suspend+0x34/0xf4
[18853.879673]  async_run_entry_fn+0xe0/0x37c
[18853.879689]  process_one_work+0x508/0xb98
[18853.879702]  worker_thread+0x7f4/0xcd4
[18853.879717]  kthread+0x2f8/0x3b8
[18853.879731]  ret_from_fork+0x10/0x30
[18853.879741]
[18853.879757] The buggy address belongs to the object at ffffffaf989a2000
[18853.879757]  which belongs to the cache kmalloc-8k of size 8192
[18853.879774] The buggy address is located 312 bytes inside of
[18853.879774]  8192-byte region [ffffffaf989a2000, ffffffaf989a4000)
[18853.879787] The buggy address belongs to the page:
[18853.879807] page:000000004bda2a59 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1d89a0
[18853.879823] head:000000004bda2a59 order:3 compound_mapcount:0 compound_pincount:0
[18853.879839] flags: 0x8000000000010200(slab|head)
[18853.879857] raw: 8000000000010200 ffffffffbc89e208 ffffffffb7fb5208 ffffffaec000cc80
[18853.879873] raw: 0000000000000000 0000000000010001 00000001ffffffff 0000000000000000
[18853.879885] page dumped because: kasan: bad access detected
[18853.879896]
[18853.879907] Memory state around the buggy address:
[18853.879922]  ffffffaf989a2000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[18853.879935]  ffffffaf989a2080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[18853.879948] >ffffffaf989a2100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[18853.879961]                                         ^
[18853.879973]  ffffffaf989a2180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[18853.879986]  ffffffaf989a2200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[18853.879998] ==================================================================

Cc: [email protected]
Reported-by: Sean Wang <[email protected]>
Signed-off-by: Felix Fietkau <[email protected]>
BluezTestBot pushed a commit that referenced this issue May 24, 2022
Do not allow to write timestamps on RX rings if PF is being configured.
When PF is being configured RX rings can be freed or rebuilt. If at the
same time timestamps are updated, the kernel will crash by dereferencing
null RX ring pointer.

PID: 1449   TASK: ff187d28ed658040  CPU: 34  COMMAND: "ice-ptp-0000:51"
 #0 [ff1966a94a713bb0] machine_kexec at ffffffff9d05a0be
 #1 [ff1966a94a713c08] __crash_kexec at ffffffff9d192e9d
 #2 [ff1966a94a713cd0] crash_kexec at ffffffff9d1941bd
 #3 [ff1966a94a713ce8] oops_end at ffffffff9d01bd54
 #4 [ff1966a94a713d08] no_context at ffffffff9d06bda4
 #5 [ff1966a94a713d60] __bad_area_nosemaphore at ffffffff9d06c10c
 #6 [ff1966a94a713da8] do_page_fault at ffffffff9d06cae4
 #7 [ff1966a94a713de0] page_fault at ffffffff9da0107e
    [exception RIP: ice_ptp_update_cached_phctime+91]
    RIP: ffffffffc076db8b  RSP: ff1966a94a713e98  RFLAGS: 00010246
    RAX: 16e3db9c6b7ccae4  RBX: ff187d269dd3c180  RCX: ff187d269cd4d018
    RDX: 0000000000000000  RSI: 0000000000000000  RDI: 0000000000000000
    RBP: ff187d269cfcc644   R8: ff187d339b9641b0   R9: 0000000000000000
    R10: 0000000000000002  R11: 0000000000000000  R12: ff187d269cfcc648
    R13: ffffffff9f128784  R14: ffffffff9d101b70  R15: ff187d269cfcc640
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #8 [ff1966a94a713ea0] ice_ptp_periodic_work at ffffffffc076dbef [ice]
 #9 [ff1966a94a713ee0] kthread_worker_fn at ffffffff9d101c1b
 #10 [ff1966a94a713f10] kthread at ffffffff9d101b4d
 #11 [ff1966a94a713f50] ret_from_fork at ffffffff9da0023f

Fixes: 77a7811 ("ice: enable receive hardware timestamping")
Signed-off-by: Arkadiusz Kubalewski <[email protected]>
Reviewed-by: Michal Schmidt <[email protected]>
Tested-by: Dave Cain <[email protected]>
Tested-by: Gurucharan <[email protected]> (A Contingent worker at Intel)
Signed-off-by: Tony Nguyen <[email protected]>
BluezTestBot pushed a commit that referenced this issue Aug 1, 2022
Ido Schimmel says:

====================
mlxsw: Add PTP support for Spectrum-2 and newer ASICs

This patchset adds PTP support for Spectrum-{2,3,4} switch ASICs. They
all act largely the same with respect to PTP except for a workaround
implemented for Spectrum-{2,3} in patch #6.

Spectrum-2 and newer ASICs essentially implement a transparent clock
between all the switch ports, including the CPU port. The hardware will
generate the UTC time stamp for transmitted / received packets at the
CPU port, but will compensate for forwarding delays in the ASIC by
adjusting the correction field in the PTP header (for PTP events) at the
ingress and egress ports.

Specifically, the hardware will subtract the current time stamp from the
correction field at the ingress port and will add the current time stamp
to the correction field at the egress port. For the purpose of an
ordinary or boundary clock (this patchset), the correction field will
always be adjusted between the CPU port and one of the front panel
ports, but never between two front panel ports.

Patchset overview:

Patch #1 extracts a helper to configure traps for PTP packets (event and
general messages). The helper is shared between all Spectrum
generations.

Patch #2 transitions Spectrum-2 and newer ASICs to use a different
format of Tx completions that includes the UTC time stamp of transmitted
packets.

Patch #3 adds basic initialization required for Spectrum-2 PTP support.
It mainly invokes the helper from patch #1.

Patch #4 adds helpers to read the UTC time (seconds and nanoseconds)
from the device over memory-mapped I/O instead of going through firmware
which is slower and therefore inaccurate. The helpers will be used to
implement various PHC operations (e.g., gettimex64) and to construct the
full UTC time stamp from the truncated one reported over Tx / Rx
completions.

Patch #5 implements the various PHC operations.

Patch #6 implements the previously described workaround for
Spectrum-{2,3}.

Patch #7 adds the ability to report a hardware time stamp for a received
/ transmitted packet based off the associated Rx / Tx completion that
includes a truncated UTC time stamp.

Patches #8 and #9 implement support for the SIOCGHWTSTAMP /
SIOCSHWTSTAMP ioctls and the get_ts_info ethtool callback, respectively.
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 7, 2023
When a system with E810 with existing VFs gets rebooted the following
hang may be observed.

 Pid 1 is hung in iavf_remove(), part of a network driver:
 PID: 1        TASK: ffff965400e5a340  CPU: 24   COMMAND: "systemd-shutdow"
  #0 [ffffaad04005fa50] __schedule at ffffffff8b3239cb
  #1 [ffffaad04005fae8] schedule at ffffffff8b323e2d
  #2 [ffffaad04005fb00] schedule_hrtimeout_range_clock at ffffffff8b32cebc
  #3 [ffffaad04005fb80] usleep_range_state at ffffffff8b32c930
  #4 [ffffaad04005fbb0] iavf_remove at ffffffffc12b9b4c [iavf]
  #5 [ffffaad04005fbf0] pci_device_remove at ffffffff8add7513
  #6 [ffffaad04005fc10] device_release_driver_internal at ffffffff8af08baa
  #7 [ffffaad04005fc40] pci_stop_bus_device at ffffffff8adcc5fc
  #8 [ffffaad04005fc60] pci_stop_and_remove_bus_device at ffffffff8adcc81e
  #9 [ffffaad04005fc70] pci_iov_remove_virtfn at ffffffff8adf9429
 #10 [ffffaad04005fca8] sriov_disable at ffffffff8adf98e4
 #11 [ffffaad04005fcc8] ice_free_vfs at ffffffffc04bb2c8 [ice]
 #12 [ffffaad04005fd10] ice_remove at ffffffffc04778fe [ice]
 #13 [ffffaad04005fd38] ice_shutdown at ffffffffc0477946 [ice]
 #14 [ffffaad04005fd50] pci_device_shutdown at ffffffff8add58f1
 #15 [ffffaad04005fd70] device_shutdown at ffffffff8af05386
 #16 [ffffaad04005fd98] kernel_restart at ffffffff8a92a870
 #17 [ffffaad04005fda8] __do_sys_reboot at ffffffff8a92abd6
 #18 [ffffaad04005fee0] do_syscall_64 at ffffffff8b317159
 #19 [ffffaad04005ff08] __context_tracking_enter at ffffffff8b31b6fc
 #20 [ffffaad04005ff18] syscall_exit_to_user_mode at ffffffff8b31b50d
 #21 [ffffaad04005ff28] do_syscall_64 at ffffffff8b317169
 #22 [ffffaad04005ff50] entry_SYSCALL_64_after_hwframe at ffffffff8b40009b
     RIP: 00007f1baa5c13d7  RSP: 00007fffbcc55a98  RFLAGS: 00000202
     RAX: ffffffffffffffda  RBX: 0000000000000000  RCX: 00007f1baa5c13d7
     RDX: 0000000001234567  RSI: 0000000028121969  RDI: 00000000fee1dead
     RBP: 00007fffbcc55ca0   R8: 0000000000000000   R9: 00007fffbcc54e90
     R10: 00007fffbcc55050  R11: 0000000000000202  R12: 0000000000000005
     R13: 0000000000000000  R14: 00007fffbcc55af0  R15: 0000000000000000
     ORIG_RAX: 00000000000000a9  CS: 0033  SS: 002b

During reboot all drivers PM shutdown callbacks are invoked.
In iavf_shutdown() the adapter state is changed to __IAVF_REMOVE.
In ice_shutdown() the call chain above is executed, which at some point
calls iavf_remove(). However iavf_remove() expects the VF to be in one
of the states __IAVF_RUNNING, __IAVF_DOWN or __IAVF_INIT_FAILED. If
that's not the case it sleeps forever.
So if iavf_shutdown() gets invoked before iavf_remove() the system will
hang indefinitely because the adapter is already in state __IAVF_REMOVE.

Fix this by returning from iavf_remove() if the state is __IAVF_REMOVE,
as we already went through iavf_shutdown().

Fixes: 9745780 ("iavf: Add waiting so the port is initialized in remove")
Fixes: a841733 ("iavf: Fix race condition between iavf_shutdown and iavf_remove")
Reported-by: Marius Cornea <[email protected]>
Signed-off-by: Stefan Assmann <[email protected]>
Reviewed-by: Michal Kubiak <[email protected]>
Tested-by: Rafal Romanowski <[email protected]>
Signed-off-by: Tony Nguyen <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 18, 2023
Andrii Nakryiko says:

====================

Add support for open-coded (aka inline) iterators in BPF world. This is a next
evolution of gradually allowing more powerful and less restrictive looping and
iteration capabilities to BPF programs.

We set up a framework for implementing all kinds of iterators (e.g., cgroup,
task, file, etc, iterators), but this patch set only implements numbers
iterator, which is used to implement ergonomic bpf_for() for-like construct
(see patches #4-#5). We also add bpf_for_each(), which is a generic
foreach-like construct that will work with any kind of open-coded iterator
implementation, as long as we stick with bpf_iter_<type>_{new,next,destroy}()
naming pattern (which we now enforce on the kernel side).

Patch #1 is preparatory refactoring for easier way to check for special kfunc
calls. Patch #2 is adding iterator kfunc registration and validation logic,
which is mostly independent from the rest of open-coded iterator logic, so is
separated out for easier reviewing.

The meat of verifier-side logic is in patch #3. Patch #4 implements numbers
iterator. I kept them separate to have clean reference for how to integrate
new iterator types (now even simpler to do than in v1 of this patch set).
Patch #5 adds bpf_for(), bpf_for_each(), and bpf_repeat() macros to
bpf_misc.h, and also adds yet another pyperf test variant, now with bpf_for()
loop. Patch #6 is verification tests, based on numbers iterator (as the only
available right now). Patch #7 actually tests runtime behavior of numbers
iterator.

Finally, with changes in v2, it's possible and trivial to implement custom
iterators completely in kernel modules, which we showcase and test by adding
a simple iterator returning same number a given number of times to
bpf_testmod. Patch #8 is where all this happens and is tested.

Most of the relevant details are in corresponding commit messages or code
comments.

v4->v5:
  - fixing missed inner for() in is_iter_reg_valid_uninit, and fixed return
    false (kernel test robot);
  - typo fixes and comment/commit description improvements throughout the
    patch set;
v3->v4:
  - remove unused variable from is_iter_reg_valid_init (kernel test robot);
v2->v3:
  - remove special kfunc leftovers for bpf_iter_num_{new,next,destroy};
  - add iters/testmod_seq* to DENYLIST.s390x, it doesn't support kfuncs in
    modules yet (CI);
v1->v2:
  - rebased on latest, dropping previously landed preparatory patches;
  - each iterator type now have its own `struct bpf_iter_<type>` which allows
    each iterator implementation to use exactly as much stack space as
    necessary, allowing to avoid runtime allocations (Alexei);
  - reworked how iterator kfuncs are defined, no verifier changes are required
    when adding new iterator type;
  - added bpf_testmod-based iterator implementation;
  - address the rest of feedback, comments, commit message adjustment, etc.

Cc: Tejun Heo <[email protected]>
====================

Signed-off-by: Alexei Starovoitov <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 24, 2023
Andrii Nakryiko says:

====================

This patch set moves bpf_for(), bpf_for_each(), and bpf_repeat() macros from
selftests-internal bpf_misc.h header to libbpf-provided bpf_helpers.h header.
To do this in a way to allow users to feature-detect and guard such
bpf_for()/bpf_for_each() uses on old kernels we also extend libbpf to improve
unresolved kfunc calls handling and reporting. This lets us mark
bpf_iter_num_{new,next,destroy}() declarations as __weak, and thus not fail
program loading outright if such kfuncs are missing on the host kernel.

Patches #1 and #2 do some simple clean ups and logging improvements. Patch #3
adds kfunc call poisoning and log fixup logic and is the hear of this patch
set, effectively. Patch #4 adds selftest for this logic. Patches #4 and #5
move bpf_for()/bpf_for_each()/bpf_repeat() into bpf_helpers.h header and mark
kfuncs as __weak to allow users to feature-detect and guard their uses.
====================

Signed-off-by: Alexei Starovoitov <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 24, 2023
Ido Schimmel says:

====================
bridge: Add per-{Port, VLAN} neighbor suppression

Background
==========

In order to minimize the flooding of ARP and ND messages in the VXLAN
network, EVPN includes provisions [1] that allow participating VTEPs to
suppress such messages in case they know the MAC-IP binding and can
reply on behalf of the remote host. In Linux, the above is implemented
in the bridge driver using a per-port option called "neigh_suppress"
that was added in kernel version 4.15 [2].

Motivation
==========

Some applications use ARP messages as keepalives between the application
nodes in the network. This works perfectly well when two nodes are
connected to the same VTEP. When a node goes down it will stop
responding to ARP requests and the other node will notice it
immediately.

However, when the two nodes are connected to different VTEPs and
neighbor suppression is enabled, the local VTEP will reply to ARP
requests even after the remote node went down, until certain timers
expire and the EVPN control plane decides to withdraw the MAC/IP
Advertisement route for the address. Therefore, some users would like to
be able to disable neighbor suppression on VLANs where such applications
reside and keep it enabled on the rest.

Implementation
==============

The proposed solution is to allow user space to control neighbor
suppression on a per-{Port, VLAN} basis, in a similar fashion to other
per-port options that gained per-{Port, VLAN} counterparts such as
"mcast_router". This allows users to benefit from the operational
simplicity and scalability associated with shared VXLAN devices (i.e.,
external / collect-metadata mode), while still allowing for per-VLAN/VNI
neighbor suppression control.

The user interface is extended with a new "neigh_vlan_suppress" bridge
port option that allows user space to enable per-{Port, VLAN} neighbor
suppression on the bridge port. When enabled, the existing
"neigh_suppress" option has no effect and neighbor suppression is
controlled using a new "neigh_suppress" VLAN option. Example usage:

 # bridge link set dev vxlan0 neigh_vlan_suppress on
 # bridge vlan add vid 10 dev vxlan0
 # bridge vlan set vid 10 dev vxlan0 neigh_suppress on

Testing
=======

Tested using existing bridge selftests. Added a dedicated selftest in
the last patch.

Patchset overview
=================

Patches #1-#5 are preparations.

Patch #6 adds per-{Port, VLAN} neighbor suppression support to the
bridge's data path.

Patches #7-#8 add the required netlink attributes to enable the feature.

Patch #9 adds a selftest.

iproute2 patches can be found here [3].

Changelog
=========

Since RFC [4]:

No changes.

[1] https://www.rfc-editor.org/rfc/rfc7432#section-10
[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a42317785c898c0ed46db45a33b0cc71b671bf29
[3] https://github.com/idosch/iproute2/tree/submit/neigh_suppress_v1
[4] https://lore.kernel.org/netdev/[email protected]/
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 26, 2023
Currently, the per cpu upcall counters are allocated after the vport is
created and inserted into the system. This could lead to the datapath
accessing the counters before they are allocated resulting in a kernel
Oops.

Here is an example:

  PID: 59693    TASK: ffff0005f4f51500  CPU: 0    COMMAND: "ovs-vswitchd"
   #0 [ffff80000a39b5b0] __switch_to at ffffb70f0629f2f4
   #1 [ffff80000a39b5d0] __schedule at ffffb70f0629f5cc
   #2 [ffff80000a39b650] preempt_schedule_common at ffffb70f0629fa60
   #3 [ffff80000a39b670] dynamic_might_resched at ffffb70f0629fb58
   #4 [ffff80000a39b680] mutex_lock_killable at ffffb70f062a1388
   #5 [ffff80000a39b6a0] pcpu_alloc at ffffb70f0594460c
   #6 [ffff80000a39b750] __alloc_percpu_gfp at ffffb70f05944e68
   #7 [ffff80000a39b760] ovs_vport_cmd_new at ffffb70ee6961b90 [openvswitch]
   ...

  PID: 58682    TASK: ffff0005b2f0bf00  CPU: 0    COMMAND: "kworker/0:3"
   #0 [ffff80000a5d2f40] machine_kexec at ffffb70f056a0758
   #1 [ffff80000a5d2f70] __crash_kexec at ffffb70f057e2994
   #2 [ffff80000a5d3100] crash_kexec at ffffb70f057e2ad8
   #3 [ffff80000a5d3120] die at ffffb70f0628234c
   #4 [ffff80000a5d31e0] die_kernel_fault at ffffb70f062828a8
   #5 [ffff80000a5d3210] __do_kernel_fault at ffffb70f056a31f4
   #6 [ffff80000a5d3240] do_bad_area at ffffb70f056a32a4
   #7 [ffff80000a5d3260] do_translation_fault at ffffb70f062a9710
   #8 [ffff80000a5d3270] do_mem_abort at ffffb70f056a2f74
   #9 [ffff80000a5d32a0] el1_abort at ffffb70f06297dac
  #10 [ffff80000a5d32d0] el1h_64_sync_handler at ffffb70f06299b24
  #11 [ffff80000a5d3410] el1h_64_sync at ffffb70f056812dc
  #12 [ffff80000a5d3430] ovs_dp_upcall at ffffb70ee6963c84 [openvswitch]
  #13 [ffff80000a5d3470] ovs_dp_process_packet at ffffb70ee6963fdc [openvswitch]
  #14 [ffff80000a5d34f0] ovs_vport_receive at ffffb70ee6972c78 [openvswitch]
  #15 [ffff80000a5d36f0] netdev_port_receive at ffffb70ee6973948 [openvswitch]
  #16 [ffff80000a5d3720] netdev_frame_hook at ffffb70ee6973a28 [openvswitch]
  #17 [ffff80000a5d3730] __netif_receive_skb_core.constprop.0 at ffffb70f06079f90

We moved the per cpu upcall counter allocation to the existing vport
alloc and free functions to solve this.

Fixes: 95637d9 ("net: openvswitch: release vport resources on failure")
Fixes: 1933ea3 ("net: openvswitch: Add support to count upcall packets")
Signed-off-by: Eelco Chaudron <[email protected]>
Reviewed-by: Simon Horman <[email protected]>
Acked-by: Aaron Conole <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 26, 2023
Petr Machata says:

====================
mlxsw: Cleanups in router code

This patchset moves some router-related code from spectrum.c to
spectrum_router.c where it should be. It also simplifies handlers of
netevent notifications.

- Patch #1 caches router pointer in a dedicated variable. This obviates the
  need to access the same as mlxsw_sp->router, making lines shorter, and
  permitting a future patch to add code that fits within 80 character
  limit.

- Patch #2 moves IP / IPv6 validation notifier blocks from spectrum.c
  to spectrum_router, where the handlers are anyway.

- In patch #3, pass router pointer to scheduler of deferred work directly,
  instead of having it deduce it on its own.

- This makes the router pointer available in the handler function
  mlxsw_sp_router_netevent_event(), so in patch #4, use it directly,
  instead of finding it through mlxsw_sp_port.

- In patch #5, extend mlxsw_sp_router_schedule_work() so that the
  NETEVENT_NEIGH_UPDATE handler can use it directly instead of inlining
  equivalent code.

- In patches #6 and #7, add helpers for two common operations involving
  a backing netdev of a RIF. This makes it unnecessary for the function
  mlxsw_sp_rif_dev() to be visible outside of the router module, so in
  patch #8, hide it.
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 26, 2023
Petr Machata says:

====================
mlxsw: Preparations for out-of-order-operations patches

The mlxsw driver currently makes the assumption that the user applies
configuration in a bottom-up manner. Thus netdevices need to be added to
the bridge before IP addresses are configured on that bridge or SVI added
on top of it. Enslaving a netdevice to another netdevice that already has
uppers is in fact forbidden by mlxsw for this reason. Despite this safety,
it is rather easy to get into situations where the offloaded configuration
is just plain wrong.

As an example, take a front panel port, configure an IP address: it gets a
RIF. Now enslave the port to a bridge, and the RIF is gone. Remove the
port from the bridge again, but the RIF never comes back. There is a number
of similar situations, where changing the configuration there and back
utterly breaks the offload.

Over the course of the following several patchsets, mlxsw code is going to
be adjusted to diminish the space of wrongly offloaded configurations.
Ideally the offload state will reflect the actual state, regardless of the
sequence of operation used to construct that state.

No functional changes are intended in this patchset yet. Rather the patches
prepare the codebase for easier introduction of functional changes in later
patchsets.

- In patch #1, extract a helper to join a RIF of a given port, if there is
  one. In patch #2, use it in a newly-added helper to join a LAG interface.

- In patches #3, #4 and #5, add helpers that abstract away the rif->dev
  access. This will make it simpler in the future to change the way the
  deduction is done. In patch #6, do this for deduction from nexthop group
  info to RIF.

- In patch #7, add a helper to destroy a RIF. So far RIF was destroyed
  simply by kfree'ing it.

- In patch #8, add a helper to check if any IP addresses are configured on
  a netdevice. This helper will be useful later.

- In patch #9, add a helper to migrate a RIF. This will be a convenient
  place to put extensions later on.

- Patch #10 move IPIP initialization up to make ipip_ops_arr available
  earlier.
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Paolo Abeni <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 27, 2023
Petr Machata says:

====================
mlxsw: Maintain candidate RIFs

The mlxsw driver currently makes the assumption that the user applies
configuration in a bottom-up manner. Thus netdevices need to be added to
the bridge before IP addresses are configured on that bridge or SVI added
on top of it. Enslaving a netdevice to another netdevice that already has
uppers is in fact forbidden by mlxsw for this reason. Despite this safety,
it is rather easy to get into situations where the offloaded configuration
is just plain wrong.

As an example, take a front panel port, configure an IP address: it gets a
RIF. Now enslave the port to the bridge, and the RIF is gone. Remove the
port from the bridge again, but the RIF never comes back. There is a number
of similar situations, where changing the configuration there and back
utterly breaks the offload.

The situation is going to be made better by implementing a range of replays
and post-hoc offloads.

This patch set lays the ground for replay of next hops. The particular
issue that it deals with is that currently, driver-specific bookkeeping for
next hops is hooked off RIF objects, which come and go across the lifetime
of a netdevice. We would rather keep these objects at an entity that
mirrors the lifetime of the netdevice itself. That way they are at hand and
can be offloaded when a RIF is eventually created.

To that end, with this patchset, mlxsw keeps a hash table of CRIFs:
candidate RIFs, persistent handles for netdevices that mlxsw deems
potentially interesting. The lifetime of a CRIF matches that of the
underlying netdevice, and thus a RIF can always assume a CRIF exists. A
CRIF is where next hops are kept, and when RIF is created, these next hops
can be easily offloaded. (Previously only the next hops created after the
RIF was created were offloaded.)

- Patches #1 and #2 are minor adjustments.
- In patches #3 and #4, add CRIF bookkeeping.
- In patch #5, link CRIFs to RIFs such that given a netdevice-backed RIF,
  the corresponding CRIF is easy to look up.
- Patch #6 is a clean-up allowed by the previous patches
- Patches #7 and #8 move next hop tracking to CRIFs

No observable effects are intended as of yet. This will be useful once
there is support for RIF creation for netdevices that become mlxsw uppers,
which will come in following patch sets.
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jul 22, 2023
Petr Machata says:

====================
mlxsw: Manage RIF across PVID changes

The mlxsw driver currently makes the assumption that the user applies
configuration in a bottom-up manner. Thus netdevices need to be added to
the bridge before IP addresses are configured on that bridge or SVI added
on top of it. Enslaving a netdevice to another netdevice that already has
uppers is in fact forbidden by mlxsw for this reason. Despite this safety,
it is rather easy to get into situations where the offloaded configuration
is just plain wrong.

As an example, take a front panel port, configure an IP address: it gets a
RIF. Now enslave the port to the bridge, and the RIF is gone. Remove the
port from the bridge again, but the RIF never comes back. There is a number
of similar situations, where changing the configuration there and back
utterly breaks the offload.

The situation is going to be made better by implementing a range of replays
and post-hoc offloads.

In this patch set, address the ordering issues related to creation of
bridge RIFs. Currently, mlxsw has several shortcomings with regards to RIF
handling due to PVID changes:

- In order to cause RIF for a bridge device to be created, the user is
  expected first to set PVID, then to add an IP address. The reverse
  ordering is disallowed, which is not very user-friendly.

- When such bridge gets a VLAN upper whose VID was the same as the existing
  PVID, and this VLAN netdevice gets an IP address, a RIF is created for
  this netdevice. The new RIF is then assigned to the 802.1Q FID for the
  given VID. This results in a working configuration. However, then, when
  the VLAN netdevice is removed again, the RIF for the bridge itself is
  never reassociated to the PVID.

- PVID cannot be changed once the bridge has uppers. Presumably this is
  because the driver does not manage RIFs properly in face of PVID changes.
  However, as the previous point shows, it is still possible to get into
  invalid configurations.

This patch set addresses these issues and relaxes some of the ordering
requirements that mlxsw had. The patch set proceeds as follows:

- In patch #1, pass extack to mlxsw_sp_br_ban_rif_pvid_change()

- To relax ordering between setting PVID and adding an IP address to a
  bridge, mlxsw must be able to request that a RIF is created with a given
  VLAN ID, instead of trying to deduce it from the current netdevice
  settings, which do not reflect the user-requested values yet. This is
  done in patches #2 and #3.

- Similarly, mlxsw_sp_inetaddr_bridge_event() will need to make decisions
  based on the user-requested value of PVID, not the current value. Thus in
  patches #4 and #5, add a new argument which carries the requested PVID
  value.

- Finally in patch #6 relax the ban on PVID changes when a bridge has
  uppers. Instead, add the logic necessary for creation of a RIF as a
  result of PVID change.

- Relevant selftests are presented afterwards. In patch #7 a preparatory
  helper is added to lib.sh. Patches #8, #9, #10 and #11 include selftests
  themselves.
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Aug 24, 2023
…l/git/netfilter/nf

Florisn Westphal says:

====================
These are netfilter fixes for the *net* tree.

First patch resolves a false-positive lockdep splat:
rcu_dereference is used outside of rcu read lock.  Let lockdep
validate that the transaction mutex is locked.

Second patch fixes a kdoc warning added in previous PR.

Third patch fixes a memory leak:
The catchall element isn't disabled correctly, this allows
userspace to deactivate the element again. This results in refcount
underflow which in turn prevents memory release. This was always
broken since the feature was added in 5.13.

Patch 4 fixes an incorrect change in the previous pull request:
Adding a duplicate key to a set should work if the duplicate key
has expired, restore this behaviour. All from myself.

Patch #5 resolves an old historic artifact in sctp conntrack:
a 300ms timeout for shutdown_ack. Increase this to 3s.  From Xin Long.

Patch #6 fixes a sysctl data race in ipvs, two threads can clobber the
sysctl value, from Sishuai Gong. This is a day-0 bug that predates git
history.

Patches 7, 8 and 9, from Pablo Neira Ayuso, are also followups
for the previous GC rework in nf_tables: The netlink notifier and the
netns exit path must both increment the gc worker seqcount, else worker
may encounter stale (free'd) pointers.
================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
Andrii Nakryiko says:

====================
bench: fast in-kernel triggering benchmarks

Remove "legacy" triggering benchmarks which rely on syscalls (and thus syscall
overhead is a noticeable part of benchmark, unfortunately). Replace them with
faster versions that rely on triggering BPF programs in-kernel through another
simple "driver" BPF program. See patch #2 with comparison results.

raw_tp/tp/fmodret benchmarks required adding a simple kfunc in kernel to be
able to trigger a simple tracepoint from BPF program (plus it is also allowed
to be replaced by fmod_ret programs). This limits raw_tp/tp/fmodret benchmarks
to new kernels only, but it keeps bench tool itself very portable and most of
other benchmarks will still work on wide variety of kernels without the need
to worry about building and deploying custom kernel module. See patches #5
and #6 for details.

v1->v2:
  - move new TP closer to BPF test run code;
  - rename/move kfunc and register it for fmod_rets (Alexei);
  - limit --trig-batch-iters param to [1, 1000] (Alexei).
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
Drop support for virtualizing adaptive PEBS, as KVM's implementation is
architecturally broken without an obvious/easy path forward, and because
exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak
host kernel addresses to the guest.

Bug #1 is that KVM doesn't account for the upper 32 bits of
IA32_FIXED_CTR_CTRL when (re)programming fixed counters, e.g
fixed_ctrl_field() drops the upper bits, reprogram_fixed_counters()
stores local variables as u8s and truncates the upper bits too, etc.

Bug #2 is that, because KVM _always_ sets precise_ip to a non-zero value
for PEBS events, perf will _always_ generate an adaptive record, even if
the guest requested a basic record.  Note, KVM will also enable adaptive
PEBS in individual *counter*, even if adaptive PEBS isn't exposed to the
guest, but this is benign as MSR_PEBS_DATA_CFG is guaranteed to be zero,
i.e. the guest will only ever see Basic records.

Bug #3 is in perf.  intel_pmu_disable_fixed() doesn't clear the upper
bits either, i.e. leaves ICL_FIXED_0_ADAPTIVE set, and
intel_pmu_enable_fixed() effectively doesn't clear ICL_FIXED_0_ADAPTIVE
either.  I.e. perf _always_ enables ADAPTIVE counters, regardless of what
KVM requests.

Bug #4 is that adaptive PEBS *might* effectively bypass event filters set
by the host, as "Updated Memory Access Info Group" records information
that might be disallowed by userspace via KVM_SET_PMU_EVENT_FILTER.

Bug #5 is that KVM doesn't ensure LBR MSRs hold guest values (or at least
zeros) when entering a vCPU with adaptive PEBS, which allows the guest
to read host LBRs, i.e. host RIPs/addresses, by enabling "LBR Entries"
records.

Disable adaptive PEBS support as an immediate fix due to the severity of
the LBR leak in particular, and because fixing all of the bugs will be
non-trivial, e.g. not suitable for backporting to stable kernels.

Note!  This will break live migration, but trying to make KVM play nice
with live migration would be quite complicated, wouldn't be guaranteed to
work (i.e. KVM might still kill/confuse the guest), and it's not clear
that there are any publicly available VMMs that support adaptive PEBS,
let alone live migrate VMs that support adaptive PEBS, e.g. QEMU doesn't
support PEBS in any capacity.

Link: https://lore.kernel.org/all/[email protected]
Link: https://lore.kernel.org/all/[email protected]
Fixes: c59a1f1 ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Cc: [email protected]
Cc: Like Xu <[email protected]>
Cc: Mingwei Zhang <[email protected]>
Cc: Zhenyu Wang <[email protected]>
Cc: Zhang Xiong <[email protected]>
Cc: Lv Zhiyuan <[email protected]>
Cc: Dapeng Mi <[email protected]>
Cc: Jim Mattson <[email protected]>
Acked-by: Like Xu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Sean Christopherson <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
On the time to free xbc memory in xbc_exit(), memblock may has handed
over memory to buddy allocator. So it doesn't make sense to free memory
back to memblock. memblock_free() called by xbc_exit() even causes UAF bugs
on architectures with CONFIG_ARCH_KEEP_MEMBLOCK disabled like x86.
Following KASAN logs shows this case.

This patch fixes the xbc memory free problem by calling memblock_free()
in early xbc init error rewind path and calling memblock_free_late() in
xbc exit path to free memory to buddy allocator.

[    9.410890] ==================================================================
[    9.418962] BUG: KASAN: use-after-free in memblock_isolate_range+0x12d/0x260
[    9.426850] Read of size 8 at addr ffff88845dd30000 by task swapper/0/1

[    9.435901] CPU: 9 PID: 1 Comm: swapper/0 Tainted: G     U             6.9.0-rc3-00208-g586b5dfb51b9 #5
[    9.446403] Hardware name: Intel Corporation RPLP LP5 (CPU:RaptorLake)/RPLP LP5 (ID:13), BIOS IRPPN02.01.01.00.00.19.015.D-00000000 Dec 28 2023
[    9.460789] Call Trace:
[    9.463518]  <TASK>
[    9.465859]  dump_stack_lvl+0x53/0x70
[    9.469949]  print_report+0xce/0x610
[    9.473944]  ? __virt_addr_valid+0xf5/0x1b0
[    9.478619]  ? memblock_isolate_range+0x12d/0x260
[    9.483877]  kasan_report+0xc6/0x100
[    9.487870]  ? memblock_isolate_range+0x12d/0x260
[    9.493125]  memblock_isolate_range+0x12d/0x260
[    9.498187]  memblock_phys_free+0xb4/0x160
[    9.502762]  ? __pfx_memblock_phys_free+0x10/0x10
[    9.508021]  ? mutex_unlock+0x7e/0xd0
[    9.512111]  ? __pfx_mutex_unlock+0x10/0x10
[    9.516786]  ? kernel_init_freeable+0x2d4/0x430
[    9.521850]  ? __pfx_kernel_init+0x10/0x10
[    9.526426]  xbc_exit+0x17/0x70
[    9.529935]  kernel_init+0x38/0x1e0
[    9.533829]  ? _raw_spin_unlock_irq+0xd/0x30
[    9.538601]  ret_from_fork+0x2c/0x50
[    9.542596]  ? __pfx_kernel_init+0x10/0x10
[    9.547170]  ret_from_fork_asm+0x1a/0x30
[    9.551552]  </TASK>

[    9.555649] The buggy address belongs to the physical page:
[    9.561875] page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x45dd30
[    9.570821] flags: 0x200000000000000(node=0|zone=2)
[    9.576271] page_type: 0xffffffff()
[    9.580167] raw: 0200000000000000 ffffea0011774c48 ffffea0012ba1848 0000000000000000
[    9.588823] raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000
[    9.597476] page dumped because: kasan: bad access detected

[    9.605362] Memory state around the buggy address:
[    9.610714]  ffff88845dd2ff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[    9.618786]  ffff88845dd2ff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[    9.626857] >ffff88845dd30000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[    9.634930]                    ^
[    9.638534]  ffff88845dd30080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[    9.646605]  ffff88845dd30100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[    9.654675] ==================================================================

Link: https://lore.kernel.org/all/[email protected]/

Fixes: 40caa12 ("init: bootconfig: Remove all bootconfig data when the init memory is removed")
Cc: [email protected]
Signed-off-by: Qiang Zhang <[email protected]>
Acked-by: Masami Hiramatsu (Google) <[email protected]>
Signed-off-by: Masami Hiramatsu (Google) <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
The rehash delayed work migrates filters from one region to another
according to the number of available credits.

The migrated from region is destroyed at the end of the work if the
number of credits is non-negative as the assumption is that this is
indicative of migration being complete. This assumption is incorrect as
a non-negative number of credits can also be the result of a failed
migration.

The destruction of a region that still has filters referencing it can
result in a use-after-free [1].

Fix by not destroying the region if migration failed.

[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858

CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G        W          6.9.0-rc2-custom-00782-gf2275c2157d8 #5
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
Call Trace:
 <TASK>
 dump_stack_lvl+0xc6/0x120
 print_report+0xce/0x670
 kasan_report+0xd7/0x110
 mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
 mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70
 mlxsw_sp_acl_atcam_entry_del+0x81/0x210
 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50
 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
 process_one_work+0x8eb/0x19b0
 worker_thread+0x6c9/0xf70
 kthread+0x2c9/0x3b0
 ret_from_fork+0x4d/0x80
 ret_from_fork_asm+0x1a/0x30
 </TASK>

Allocated by task 174:
 kasan_save_stack+0x33/0x60
 kasan_save_track+0x14/0x30
 __kasan_kmalloc+0x8f/0xa0
 __kmalloc+0x19c/0x360
 mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0
 mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300
 process_one_work+0x8eb/0x19b0
 worker_thread+0x6c9/0xf70
 kthread+0x2c9/0x3b0
 ret_from_fork+0x4d/0x80
 ret_from_fork_asm+0x1a/0x30

Freed by task 7:
 kasan_save_stack+0x33/0x60
 kasan_save_track+0x14/0x30
 kasan_save_free_info+0x3b/0x60
 poison_slab_object+0x102/0x170
 __kasan_slab_free+0x14/0x30
 kfree+0xc1/0x290
 mlxsw_sp_acl_tcam_region_destroy+0x272/0x310
 mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300
 process_one_work+0x8eb/0x19b0
 worker_thread+0x6c9/0xf70
 kthread+0x2c9/0x3b0
 ret_from_fork+0x4d/0x80
 ret_from_fork_asm+0x1a/0x30

Fixes: c9c9af9 ("mlxsw: spectrum_acl: Allow to interrupt/continue rehash work")
Signed-off-by: Ido Schimmel <[email protected]>
Tested-by: Alexander Zubkov <[email protected]>
Reviewed-by: Petr Machata <[email protected]>
Signed-off-by: Petr Machata <[email protected]>
Reviewed-by: Simon Horman <[email protected]>
Link: https://lore.kernel.org/r/3e412b5659ec2310c5c615760dfe5eac18dd7ebd.1713797103.git.petrm@nvidia.com
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
As reported by Jose E. Marchesi in off-list discussion, GCC and LLVM
generate slightly different code for dummy_st_ops_success/test_1():

  SEC("struct_ops/test_1")
  int BPF_PROG(test_1, struct bpf_dummy_ops_state *state)
  {
  	int ret;

  	if (!state)
  		return 0xf2f3f4f5;

  	ret = state->val;
  	state->val = 0x5a;
  	return ret;
  }

  GCC-generated                  LLVM-generated
  ----------------------------   ---------------------------
  0: r1 = *(u64 *)(r1 + 0x0)     0: w0 = -0xd0c0b0b
  1: if r1 == 0x0 goto 5f        1: r1 = *(u64 *)(r1 + 0x0)
  2: r0 = *(s32 *)(r1 + 0x0)     2: if r1 == 0x0 goto 6f
  3: *(u32 *)(r1 + 0x0) = 0x5a   3: r0 = *(u32 *)(r1 + 0x0)
  4: exit                        4: w2 = 0x5a
  5: r0 = -0xd0c0b0b             5: *(u32 *)(r1 + 0x0) = r2
  6: exit                        6: exit

If the 'state' argument is not marked as nullable in
net/bpf/bpf_dummy_struct_ops.c, the verifier would assume that
'r1 == 0x0' is never true:
- for the GCC version, this means that instructions #5-6 would be
  marked as dead and removed;
- for the LLVM version, all instructions would be marked as live.

The test dummy_st_ops/dummy_init_ret_value actually sets the 'state'
parameter to NULL.

Therefore, when the 'state' argument is not marked as nullable,
the GCC-generated version of the code would trigger a NULL pointer
dereference at instruction #3.

This patch updates the test_1() test case to always follow a shape
similar to the GCC-generated version above, in order to verify whether
the 'state' nullability is marked correctly.

Reported-by: Jose E. Marchesi <[email protected]>
Signed-off-by: Eduard Zingerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
Eduard Zingerman says:

====================
check bpf_dummy_struct_ops program params for test runs

When doing BPF_PROG_TEST_RUN for bpf_dummy_struct_ops programs,
execution should be rejected when NULL is passed for non-nullable
params, because for such params verifier assumes that such params are
never NULL and thus might optimize out NULL checks.

This problem was reported by Jose E. Marchesi in off-list discussion.
The code generated by GCC for dummy_st_ops_success/test_1() function
differs from LLVM variant in a way that allows verifier to remove the
NULL check. The test dummy_st_ops/dummy_init_ret_value actually sets
the 'state' parameter to NULL, thus GCC-generated version of the test
triggers NULL pointer dereference when BPF program is executed.

This patch-set addresses the issue in the following steps:
- patch #1 marks bpf_dummy_struct_ops.test_1 parameter as nullable,
  for verifier to have correct assumptions about test_1() programs;
- patch #2 modifies dummy_st_ops/dummy_init_ret_value to trigger NULL
  dereference with both GCC and LLVM (if patch #1 is not applied);
- patch #3 adjusts a few dummy_st_ops test cases to avoid passing NULL
  for 'state' parameter of test_2() and test_sleepable() functions,
  as parameters of these functions are not marked as nullable;
- patch #4 adjusts bpf_dummy_struct_ops to reject test execution of
  programs if NULL is passed for non-nullable parameter;
- patch #5 adds a test to verify logic from patch #4.
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
Petr Machata says:

====================
mlxsw: Improve events processing performance

Amit Cohen writes:

Spectrum ASICs only support a single interrupt, it means that all the
events are handled by one IRQ (interrupt request) handler.

Currently, we schedule a tasklet to handle events in EQ, then we also use
tasklet for CQ, SDQ and RDQ. Tasklet runs in softIRQ (software IRQ)
context, and will be run on the same CPU which scheduled it. It means that
today we have one CPU which handles all the packets (both network packets
and EMADs) from hardware.

The existing implementation is not efficient and can be improved.

Measuring latency of EMADs in the driver (without the time in FW) shows
that latency is increased by factor of 28 (x28) when network traffic is
handled by the driver.

Measuring throughput in CPU shows that CPU can handle ~35% less packets
of specific flow when corrupted packets are also handled by the driver.
There are cases that these values even worse, we measure decrease of ~44%
packet rate.

This can be improved if network packet and EMADs will be handled in
parallel by several CPUs, and more than that, if different types of traffic
will be handled in parallel. We can achieve this using NAPI.

This set converts the driver to process completions from hardware via NAPI.
The idea is to add NAPI instance per CQ (which is mapped 1:1 to SDQ/RDQ),
which means that each DQ can be handled separately. we have DQ for EMADs
and DQs for each trap group (like LLDP, BGP, L3 drops, etc..). See more
details in commit messages.

An additional improvement which is done as part of this set is related to
doorbells' ring. The idea is to handle small chunks of Rx packets (which
is also recommended using NAPI) and ring doorbells once per chunk. This
reduces the access to hardware which is expensive (time wise) and might
take time because of memory barriers.

With this set we can see better performance.
To summerize:

EMADs latency:
+------------------------------------------------------------------------+
|                  | Before this set           | Now                     |
|------------------|---------------------------|-------------------------|
| Increased factor | x28                       | x1.5                    |
+------------------------------------------------------------------------+
Note that we can see even measurements that show better latency when
traffic is handled by the driver.

Throughput:
+------------------------------------------------------------------------+
|             | Before this set            | Now                         |
|-------------|----------------------------|-----------------------------|
| Reduced     | 35%                        | 6%                          |
| packet rate |                            |                             |
+------------------------------------------------------------------------+

Additional improvements are planned - use page pool for buffer allocations
and avoid cache miss of each SKB using napi_build_skb().

Patch set overview:
Patches #1-#2 improve access to hardware by reducing dorbells' rings
Patch #3-#4 are preaparations for NAPI usage
Patch #5 converts the driver to use NAPI
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
Wen Gu says:

====================
net/smc: SMC intra-OS shortcut with loopback-ism

This patch set acts as the second part of the new version of [1] (The first
part can be referred from [2]), the updated things of this version are listed
at the end.

- Background

SMC-D is now used in IBM z with ISM function to optimize network interconnect
for intra-CPC communications. Inspired by this, we try to make SMC-D available
on the non-s390 architecture through a software-implemented Emulated-ISM device,
that is the loopback-ism device here, to accelerate inter-process or
inter-containers communication within the same OS instance.

- Design

This patch set includes 3 parts:

 - Patch #1: some prepare work for loopback-ism.
 - Patch #2-#7: implement loopback-ism device and adapt SMC-D for it.
   loopback-ism now serves only SMC and no userspace interfaces exposed.
 - Patch #8-#11: memory copy optimization for intra-OS scenario.

The loopback-ism device is designed as an ISMv2 device and not be limited to
a specific net namespace, ends of both inter-process connection (1/1' in diagram
below) or inter-container connection (2/2' in diagram below) can find the same
available loopback-ism and choose it during the CLC handshake.

 Container 1 (ns1)                              Container 2 (ns2)
 +-----------------------------------------+    +-------------------------+
 | +-------+      +-------+      +-------+ |    |        +-------+        |
 | | App A |      | App B |      | App C | |    |        | App D |<-+     |
 | +-------+      +---^---+      +-------+ |    |        +-------+  |(2') |
 |     |127.0.0.1 (1')|             |192.168.0.11       192.168.0.12|     |
 |  (1)|   +--------+ | +--------+  |(2)   |    | +--------+   +--------+ |
 |     `-->|   lo   |-` |  eth0  |<-`      |    | |   lo   |   |  eth0  | |
 +---------+--|---^-+---+-----|--+---------+    +-+--------+---+-^------+-+
              |   |           |                                  |
 Kernel       |   |           |                                  |
 +----+-------v---+-----------v----------------------------------+---+----+
 |    |                            TCP                               |    |
 |    |                                                              |    |
 |    +--------------------------------------------------------------+    |
 |                                                                        |
 |                           +--------------+                             |
 |                           | smc loopback |                             |
 +---------------------------+--------------+-----------------------------+

loopback-ism device creates DMBs (shared memory) for each connection peer.
Since data transfer occurs within the same kernel, the sndbuf of each peer
is only a descriptor and point to the same memory region as peer DMB, so that
the data copy from sndbuf to peer DMB can be avoided in loopback-ism case.

 Container 1 (ns1)                              Container 2 (ns2)
 +-----------------------------------------+    +-------------------------+
 | +-------+                               |    |        +-------+        |
 | | App C |-----+                         |    |        | App D |        |
 | +-------+     |                         |    |        +-^-----+        |
 |               |                         |    |          |              |
 |           (2) |                         |    |     (2') |              |
 |               |                         |    |          |              |
 +---------------|-------------------------+    +----------|--------------+
                 |                                         |
 Kernel          |                                         |
 +---------------|-----------------------------------------|--------------+
 | +--------+ +--v-----+                           +--------+ +--------+  |
 | |dmb_desc| |snd_desc|                           |dmb_desc| |snd_desc|  |
 | +-----|--+ +--|-----+                           +-----|--+ +--------+  |
 | +-----|--+    |                                 +-----|--+             |
 | | DMB C  |    +---------------------------------| DMB D  |             |
 | +--------+                                      +--------+             |
 |                                                                        |
 |                           +--------------+                             |
 |                           | smc loopback |                             |
 +---------------------------+--------------+-----------------------------+

- Benchmark Test

 * Test environments:
      - VM with Intel Xeon Platinum 8 core 2.50GHz, 16 GiB mem.
      - SMC sndbuf/DMB size 1MB.

 * Test object:
      - TCP: run on TCP loopback.
      - SMC lo: run on SMC loopback-ism.

1. ipc-benchmark (see [3])

 - ./<foo> -c 1000000 -s 100

                            TCP                  SMC-lo
Message
rate (msg/s)              84991                  151293(+78.01%)

2. sockperf

 - serv: <smc_run> sockperf sr --tcp
 - clnt: <smc_run> sockperf { tp | pp } --tcp --msg-size={ 64000 for tp | 14 for pp } -i 127.0.0.1 -t 30

                            TCP                  SMC-lo
Bandwidth(MBps)        5033.569                7987.732(+58.69%)
Latency(us)               5.986                   3.398(-43.23%)

3. nginx/wrk

 - serv: <smc_run> nginx
 - clnt: <smc_run> wrk -t 8 -c 1000 -d 30 http://127.0.0.1:80

                           TCP                   SMC-lo
Requests/s           187951.76                267107.90(+42.12%)

4. redis-benchmark

 - serv: <smc_run> redis-server
 - clnt: <smc_run> redis-benchmark -h 127.0.0.1 -q -t set,get -n 400000 -c 200 -d 1024

                           TCP                   SMC-lo
GET(Requests/s)       86132.64                118133.49(+37.15%)
SET(Requests/s)       87374.40                122887.86(+40.65%)

Change log:
v7->v6
- Patch #2: minor: remove unnecessary 'return' of inline smc_loopback_exit().
- Patch #10: minor: directly return 0 instead of 'rc' in smcd_cdc_msg_send().
- all: collect the Reviewed-by tags.

v6->RFC v5
Link: https://lore.kernel.org/netdev/[email protected]/
- Patch #2: make the use of CONFIG_SMC_LO cleaner.
- Patch #5: mark some smcd_ops that loopback-ism doesn't support as
  optional and check for the support when they are called.
- Patch #7: keep loopback-ism at the beginning of the SMC-D device list.
- Some expression changes in commit logs and comments.

RFC v5->RFC v4:
Link: https://lore.kernel.org/netdev/[email protected]/
- Patch #2: minor changes in description of config SMC_LO and comments.
- Patch #10: minor changes in comments and if(smc_ism_support_dmb_nocopy())
  check in smcd_cdc_msg_send().
- Patch #3: change smc_lo_generate_id() to smc_lo_generate_ids() and SMC_LO_CHID
  to SMC_LO_RESERVED_CHID.
- Patch #5: memcpy while holding the ldev->dmb_ht_lock.
- Some expression changes in commit logs.

RFC v4->v3:
Link: https://lore.kernel.org/netdev/[email protected]/
- The merge window of v6.9 is open, so post this series as an RFC.
- Patch #6: since some information fed back by smc_nl_handle_smcd_dev() dose
  not apply to Emulated-ISM (including loopback-ism here), loopback-ism is
  not exposed through smc netlink for the time being. we may refactor this
  part when smc netlink interface is updated.

v3->v2:
Link: https://lore.kernel.org/netdev/[email protected]/
- Patch #11: use tasklet_schedule(&conn->rx_tsklet) instead of smcd_cdc_rx_handler()
  to avoid possible recursive locking of conn->send_lock and use {read|write}_lock_bh()
  to acquire dmb_ht_lock.

v2->v1:
Link: https://lore.kernel.org/netdev/[email protected]/
- All the patches: changed the term virtual-ISM to Emulated-ISM as defined by SMCv2.1.
- Patch #3: optimized the description of SMC_LO config. Avoid exposing loopback-ism
  to sysfs and remove all the knobs until future definition clear.
- Patch #3: try to make lockdep happy by using read_lock_bh() in smc_lo_move_data().
- Patch #6: defaultly use physical contiguous DMB buffers.
- Patch #11: defaultly enable DMB no-copy for loopback-ism and free the DMB in
  unregister_dmb or detach_dmb when dmb_node->refcnt reaches 0, instead of using
  wait_event to keep waiting in unregister_dmb.

v1->RFC:
Link: https://lore.kernel.org/netdev/[email protected]/
- Patch #9: merge rx_bytes and tx_bytes as xfer_bytes statistics:
  /sys/devices/virtual/smc/loopback-ism/xfer_bytes
- Patch #10: add support_dmb_nocopy operation to check if SMC-D device supports
  merging sndbuf with peer DMB.
- Patch #13 & #14: introduce loopback-ism device control of DMB memory type and
  control of whether to merge sndbuf and DMB. They can be respectively set by:
  /sys/devices/virtual/smc/loopback-ism/dmb_type
  /sys/devices/virtual/smc/loopback-ism/dmb_copy
  The motivation for these two control is that a performance bottleneck was
  found when using vzalloced DMB and sndbuf is merged with DMB, and there are
  many CPUs and CONFIG_HARDENED_USERCOPY is set [4]. The bottleneck is caused
  by the lock contention in vmap_area_lock [5] which is involved in memcpy_from_msg()
  or memcpy_to_msg(). Currently, Uladzislau Rezki is working on mitigating the
  vmap lock contention [6]. It has significant effects, but using virtual memory
  still has additional overhead compared to using physical memory.
  So this new version provides controls of dmb_type and dmb_copy to suit
  different scenarios.
- Some minor changes and comments improvements.

RFC->old version([1]):
Link: https://lore.kernel.org/netdev/[email protected]/
- Patch #1: improve the loopback-ism dump, it shows as follows now:
  # smcd d
  FID  Type  PCI-ID        PCHID  InUse  #LGs  PNET-ID
  0000 0     loopback-ism  ffff   No        0
- Patch #3: introduce the smc_ism_set_v2_capable() helper and set
  smc_ism_v2_capable when ISMv2 or virtual ISM is registered,
  regardless of whether there is already a device in smcd device list.
- Patch #3: loopback-ism will be added into /sys/devices/virtual/smc/loopback-ism/.
- Patch #8: introduce the runtime switch /sys/devices/virtual/smc/loopback-ism/active
  to activate or deactivate the loopback-ism.
- Patch #9: introduce the statistics of loopback-ism by
  /sys/devices/virtual/smc/loopback-ism/{{tx|rx}_tytes|dmbs_cnt}.
- Some minor changes and comments improvements.

[1] https://lore.kernel.org/netdev/[email protected]/
[2] https://lore.kernel.org/netdev/[email protected]/
[3] https://github.com/goldsborough/ipc-bench
[4] https://lore.kernel.org/all/[email protected]/
[5] https://lore.kernel.org/all/[email protected]/
[6] https://lore.kernel.org/all/[email protected]/
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Paolo Abeni <[email protected]>
BluezTestBot pushed a commit that referenced this issue May 15, 2024
…/git/pablo/gtp

Pablo neira Ayuso says:

====================
gtp pull request 24-05-07

This v3 includes:
- fix for clang uninitialized variable per Jakub.
- address Smatch and Coccinelle reports per Simon
- remove inline in new IPv6 support per Simon
- fix memleaks in netlink control plane per Simon
-o-

The following patchset contains IPv6 GTP driver support for net-next,
this also includes IPv6 over IPv4 and vice-versa:

Patch #1 removes a unnecessary stack variable initialization in the
         socket routine.

Patch #2 deals with GTP extension headers. This variable length extension
         header to decapsulate packets accordingly. Otherwise, packets are
         dropped when these extension headers are present which breaks
         interoperation with other non-Linux based GTP implementations.

Patch #3 prepares for IPv6 support by moving IPv4 specific fields in PDP
         context objects to a union.

Patch #4 adds IPv6 support while retaining backward compatibility.
         Three new attributes allows to declare an IPv6 GTP tunnel
         GTPA_FAMILY, GTPA_PEER_ADDR6 and GTPA_MS_ADDR6 as well as
         IFLA_GTP_LOCAL6 to declare the IPv6 GTP UDP socket. Up to this
         patch, only IPv6 outer in IPv6 inner is supported.

Patch #5 uses IPv6 address /64 prefix for UE/MS in the inner headers.
         Unlike IPv4, which provides a 1:1 mapping between UE/MS,
         IPv6 tunnel encapsulates traffic for /64 address as specified
         by 3GPP TS. Patch has been split from Patch #4 to highlight
         this behaviour.

Patch #6 passes up IPv6 link-local traffic, such as IPv6 SLAAC, for
         handling to userspace so they are handled as control packets.

Patch #7 prepares to allow for GTP IPv4 over IPv6 and vice-versa by
         moving IP specific debugging out of the function to build
         IPv4 and IPv6 GTP packets.

Patch #8 generalizes TOS/DSCP handling following similar approach as
         in the existing iptunnel infrastructure.

Patch #9 adds a helper function to build an IPv4 GTP packet in the outer
         header.

Patch #10 adds a helper function to build an IPv6 GTP packet in the outer
          header.

Patch #11 adds support for GTP IPv4-over-IPv6 and vice-versa.

Patch #12 allows to use the same TID/TEID (tunnel identifier) for inner
          IPv4 and IPv6 packets for better UE/MS dual stack integration.

This series integrates with the osmocom.org project CI and TTCN-3 test
infrastructure (Oliver Smith) as well as the userspace libgtpnl library.

Thanks to Harald Welte, Oliver Smith and Pau Espin for reviewing and
providing feedback through the osmocom.org redmine platform to make this
happen.
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue May 15, 2024
…rnel/git/netfilter/nf-next

Pablo Neira Ayuso says:

====================
Netfilter updates for net-next

The following patchset contains Netfilter updates for net-next:

Patch #1 skips transaction if object type provides no .update interface.

Patch #2 skips NETDEV_CHANGENAME which is unused.

Patch #3 enables conntrack to handle Multicast Router Advertisements and
	 Multicast Router Solicitations from the Multicast Router Discovery
	 protocol (RFC4286) as untracked opposed to invalid packets.
	 From Linus Luessing.

Patch #4 updates DCCP conntracker to mark invalid as invalid, instead of
	 dropping them, from Jason Xing.

Patch #5 uses NF_DROP instead of -NF_DROP since NF_DROP is 0,
	 also from Jason.

Patch #6 removes reference in netfilter's sysctl documentation on pickup
	 entries which were already removed by Florian Westphal.

Patch #7 removes check for IPS_OFFLOAD flag to disable early drop which
	 allows to evict entries from the conntrack table,
	 also from Florian.

Patches #8 to #16 updates nf_tables pipapo set backend to allocate
	 the datastructure copy on-demand from preparation phase,
	 to better deal with OOM situations where .commit step is too late
	 to fail. Series from Florian Westphal.

Patch #17 adds a selftest with packetdrill to cover conntrack TCP state
	 transitions, also from Florian.

Patch #18 use GFP_KERNEL to clone elements from control plane to avoid
	 quick atomic reserves exhaustion with large sets, reporter refers
	 to million entries magnitude.

* tag 'nf-next-24-05-12' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf-next:
  netfilter: nf_tables: allow clone callbacks to sleep
  selftests: netfilter: add packetdrill based conntrack tests
  netfilter: nft_set_pipapo: remove dirty flag
  netfilter: nft_set_pipapo: move cloning of match info to insert/removal path
  netfilter: nft_set_pipapo: prepare pipapo_get helper for on-demand clone
  netfilter: nft_set_pipapo: merge deactivate helper into caller
  netfilter: nft_set_pipapo: prepare walk function for on-demand clone
  netfilter: nft_set_pipapo: prepare destroy function for on-demand clone
  netfilter: nft_set_pipapo: make pipapo_clone helper return NULL
  netfilter: nft_set_pipapo: move prove_locking helper around
  netfilter: conntrack: remove flowtable early-drop test
  netfilter: conntrack: documentation: remove reference to non-existent sysctl
  netfilter: use NF_DROP instead of -NF_DROP
  netfilter: conntrack: dccp: try not to drop skb in conntrack
  netfilter: conntrack: fix ct-state for ICMPv6 Multicast Router Discovery
  netfilter: nf_tables: remove NETDEV_CHANGENAME from netdev chain event handler
  netfilter: nf_tables: skip transaction if update object is not implemented
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 20, 2024
With commit c4cb231 ("iommu/amd: Add support for enable/disable IOPF")
we are hitting below issue. This happens because in IOPF enablement path
it holds spin lock with irq disable and then tries to take mutex lock.

dmesg:
-----
[    0.938739] =============================
[    0.938740] [ BUG: Invalid wait context ]
[    0.938742] 6.10.0-rc1+ #1 Not tainted
[    0.938745] -----------------------------
[    0.938746] swapper/0/1 is trying to lock:
[    0.938748] ffffffff8c9f01d8 (&port_lock_key){....}-{3:3}, at: serial8250_console_write+0x78/0x4a0
[    0.938767] other info that might help us debug this:
[    0.938768] context-{5:5}
[    0.938769] 7 locks held by swapper/0/1:
[    0.938772]  #0: ffff888101a91310 (&group->mutex){+.+.}-{4:4}, at: bus_iommu_probe+0x70/0x160
[    0.938790]  #1: ffff888101d1f1b8 (&domain->lock){....}-{3:3}, at: amd_iommu_attach_device+0xa5/0x700
[    0.938799]  #2: ffff888101cc3d18 (&dev_data->lock){....}-{3:3}, at: amd_iommu_attach_device+0xc5/0x700
[    0.938806]  #3: ffff888100052830 (&iommu->lock){....}-{2:2}, at: amd_iommu_iopf_add_device+0x3f/0xa0
[    0.938813]  #4: ffffffff8945a340 (console_lock){+.+.}-{0:0}, at: _printk+0x48/0x50
[    0.938822]  #5: ffffffff8945a390 (console_srcu){....}-{0:0}, at: console_flush_all+0x58/0x4e0
[    0.938867]  #6: ffffffff82459f80 (console_owner){....}-{0:0}, at: console_flush_all+0x1f0/0x4e0
[    0.938872] stack backtrace:
[    0.938874] CPU: 2 PID: 1 Comm: swapper/0 Not tainted 6.10.0-rc1+ #1
[    0.938877] Hardware name: HP HP EliteBook 745 G3/807E, BIOS N73 Ver. 01.39 04/16/2019

Fix above issue by re-arranging code in attach device path:
  - move device PASID/IOPF enablement outside lock in AMD IOMMU driver.
    This is safe as core layer holds group->mutex lock before calling
    iommu_ops->attach_dev.

Reported-by: Borislav Petkov <[email protected]>
Reported-by: Mikhail Gavrilov <[email protected]>
Reported-by: Chris Bainbridge <[email protected]>
Fixes: c4cb231 ("iommu/amd: Add support for enable/disable IOPF")
Tested-by: Borislav Petkov <[email protected]>
Tested-by: Chris Bainbridge <[email protected]>
Tested-by: Mikhail Gavrilov <[email protected]>
Signed-off-by: Vasant Hegde <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Joerg Roedel <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 20, 2024
…PLES event"

This reverts commit 7d1405c.

This causes segfaults in some cases, as reported by Milian:

  ```
  sudo /usr/bin/perf record -z --call-graph dwarf -e cycles -e
  raw_syscalls:sys_enter ls
  ...
  [ perf record: Woken up 3 times to write data ]
  malloc(): invalid next size (unsorted)
  Aborted
  ```

  Backtrace with GDB + debuginfod:

  ```
  malloc(): invalid next size (unsorted)

  Thread 1 "perf" received signal SIGABRT, Aborted.
  __pthread_kill_implementation (threadid=<optimized out>, signo=signo@entry=6,
  no_tid=no_tid@entry=0) at pthread_kill.c:44
  Downloading source file /usr/src/debug/glibc/glibc/nptl/pthread_kill.c
  44            return INTERNAL_SYSCALL_ERROR_P (ret) ? INTERNAL_SYSCALL_ERRNO
  (ret) : 0;
  (gdb) bt
  #0  __pthread_kill_implementation (threadid=<optimized out>,
  signo=signo@entry=6, no_tid=no_tid@entry=0) at pthread_kill.c:44
  #1  0x00007ffff6ea8eb3 in __pthread_kill_internal (threadid=<optimized out>,
  signo=6) at pthread_kill.c:78
  #2  0x00007ffff6e50a30 in __GI_raise (sig=sig@entry=6) at ../sysdeps/posix/
  raise.c:26
  #3  0x00007ffff6e384c3 in __GI_abort () at abort.c:79
  #4  0x00007ffff6e39354 in __libc_message_impl (fmt=fmt@entry=0x7ffff6fc22ea
  "%s\n") at ../sysdeps/posix/libc_fatal.c:132
  #5  0x00007ffff6eb3085 in malloc_printerr (str=str@entry=0x7ffff6fc5850
  "malloc(): invalid next size (unsorted)") at malloc.c:5772
  #6  0x00007ffff6eb657c in _int_malloc (av=av@entry=0x7ffff6ff6ac0
  <main_arena>, bytes=bytes@entry=368) at malloc.c:4081
  #7  0x00007ffff6eb877e in __libc_calloc (n=<optimized out>,
  elem_size=<optimized out>) at malloc.c:3754
  #8  0x000055555569bdb6 in perf_session.do_write_header ()
  #9  0x00005555555a373a in __cmd_record.constprop.0 ()
  #10 0x00005555555a6846 in cmd_record ()
  #11 0x000055555564db7f in run_builtin ()
  #12 0x000055555558ed77 in main ()
  ```

  Valgrind memcheck:
  ```
  ==45136== Invalid write of size 8
  ==45136==    at 0x2B38A5: perf_event__synthesize_id_sample (in /usr/bin/perf)
  ==45136==    by 0x157069: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==  Address 0x6a866a8 is 0 bytes after a block of size 40 alloc'd
  ==45136==    at 0x4849BF3: calloc (vg_replace_malloc.c:1675)
  ==45136==    by 0x3574AB: zalloc (in /usr/bin/perf)
  ==45136==    by 0x1570E0: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==
  ==45136== Syscall param write(buf) points to unaddressable byte(s)
  ==45136==    at 0x575953D: __libc_write (write.c:26)
  ==45136==    by 0x575953D: write (write.c:24)
  ==45136==    by 0x35761F: ion (in /usr/bin/perf)
  ==45136==    by 0x357778: writen (in /usr/bin/perf)
  ==45136==    by 0x1548F7: record__write (in /usr/bin/perf)
  ==45136==    by 0x15708A: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==  Address 0x6a866a8 is 0 bytes after a block of size 40 alloc'd
  ==45136==    at 0x4849BF3: calloc (vg_replace_malloc.c:1675)
  ==45136==    by 0x3574AB: zalloc (in /usr/bin/perf)
  ==45136==    by 0x1570E0: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==
 -----

Closes: https://lore.kernel.org/linux-perf-users/23879991.0LEYPuXRzz@milian-workstation/
Reported-by: Milian Wolff <[email protected]>
Tested-by: Milian Wolff <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: [email protected] # 6.8+
Link: https://lore.kernel.org/lkml/Zl9ksOlHJHnKM70p@x1
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 20, 2024
We have been seeing crashes on duplicate keys in
btrfs_set_item_key_safe():

  BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192)
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.c:2620!
  invalid opcode: 0000 [#1] PREEMPT SMP PTI
  CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
  RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs]

With the following stack trace:

  #0  btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4)
  #1  btrfs_drop_extents (fs/btrfs/file.c:411:4)
  #2  log_one_extent (fs/btrfs/tree-log.c:4732:9)
  #3  btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9)
  #4  btrfs_log_inode (fs/btrfs/tree-log.c:6626:9)
  #5  btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8)
  #6  btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8)
  #7  btrfs_sync_file (fs/btrfs/file.c:1933:8)
  #8  vfs_fsync_range (fs/sync.c:188:9)
  #9  vfs_fsync (fs/sync.c:202:9)
  #10 do_fsync (fs/sync.c:212:9)
  #11 __do_sys_fdatasync (fs/sync.c:225:9)
  #12 __se_sys_fdatasync (fs/sync.c:223:1)
  #13 __x64_sys_fdatasync (fs/sync.c:223:1)
  #14 do_syscall_x64 (arch/x86/entry/common.c:52:14)
  #15 do_syscall_64 (arch/x86/entry/common.c:83:7)
  #16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121)

So we're logging a changed extent from fsync, which is splitting an
extent in the log tree. But this split part already exists in the tree,
triggering the BUG().

This is the state of the log tree at the time of the crash, dumped with
drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py)
to get more details than btrfs_print_leaf() gives us:

  >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"])
  leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610
  leaf 33439744 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
          item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160
                  generation 7 transid 9 size 8192 nbytes 8473563889606862198
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 204 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417704.983333333 (2024-05-22 15:41:44)
                  mtime 1716417704.983333333 (2024-05-22 15:41:44)
                  otime 17592186044416.000000000 (559444-03-08 01:40:16)
          item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13
                  index 195 namelen 3 name: 193
          item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 4096 ram 12288
                  extent compression 0 (none)
          item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 4096 nr 8192
          item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096
  ...

So the real problem happened earlier: notice that items 4 (4k-12k) and 5
(8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and
item 5 starts at i_size.

Here is the state of the filesystem tree at the time of the crash:

  >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root
  >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0))
  >>> print_extent_buffer(nodes[0])
  leaf 30425088 level 0 items 184 generation 9 owner 5
  leaf 30425088 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
  	...
          item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160
                  generation 7 transid 7 size 4096 nbytes 12288
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 6 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417703.220000000 (2024-05-22 15:41:43)
                  mtime 1716417703.220000000 (2024-05-22 15:41:43)
                  otime 1716417703.220000000 (2024-05-22 15:41:43)
          item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13
                  index 195 namelen 3 name: 193
          item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 8192 ram 12288
                  extent compression 0 (none)
          item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096

Item 5 in the log tree corresponds to item 183 in the filesystem tree,
but nothing matches item 4. Furthermore, item 183 is the last item in
the leaf.

btrfs_log_prealloc_extents() is responsible for logging prealloc extents
beyond i_size. It first truncates any previously logged prealloc extents
that start beyond i_size. Then, it walks the filesystem tree and copies
the prealloc extent items to the log tree.

If it hits the end of a leaf, then it calls btrfs_next_leaf(), which
unlocks the tree and does another search. However, while the filesystem
tree is unlocked, an ordered extent completion may modify the tree. In
particular, it may insert an extent item that overlaps with an extent
item that was already copied to the log tree.

This may manifest in several ways depending on the exact scenario,
including an EEXIST error that is silently translated to a full sync,
overlapping items in the log tree, or this crash. This particular crash
is triggered by the following sequence of events:

- Initially, the file has i_size=4k, a regular extent from 0-4k, and a
  prealloc extent beyond i_size from 4k-12k. The prealloc extent item is
  the last item in its B-tree leaf.
- The file is fsync'd, which copies its inode item and both extent items
  to the log tree.
- An xattr is set on the file, which sets the
  BTRFS_INODE_COPY_EVERYTHING flag.
- The range 4k-8k in the file is written using direct I/O. i_size is
  extended to 8k, but the ordered extent is still in flight.
- The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this
  calls copy_inode_items_to_log(), which calls
  btrfs_log_prealloc_extents().
- btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the
  filesystem tree. Since it starts before i_size, it skips it. Since it
  is the last item in its B-tree leaf, it calls btrfs_next_leaf().
- btrfs_next_leaf() unlocks the path.
- The ordered extent completion runs, which converts the 4k-8k part of
  the prealloc extent to written and inserts the remaining prealloc part
  from 8k-12k.
- btrfs_next_leaf() does a search and finds the new prealloc extent
  8k-12k.
- btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into
  the log tree. Note that it overlaps with the 4k-12k prealloc extent
  that was copied to the log tree by the first fsync.
- fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k
  extent that was written.
- This tries to drop the range 4k-8k in the log tree, which requires
  adjusting the start of the 4k-12k prealloc extent in the log tree to
  8k.
- btrfs_set_item_key_safe() sees that there is already an extent
  starting at 8k in the log tree and calls BUG().

Fix this by detecting when we're about to insert an overlapping file
extent item in the log tree and truncating the part that would overlap.

CC: [email protected] # 6.1+
Reviewed-by: Filipe Manana <[email protected]>
Signed-off-by: Omar Sandoval <[email protected]>
Signed-off-by: David Sterba <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
Petr Machata says:

====================
mlxsw: ACL fixes

Ido Schimmel writes:

Patches #1-#3 fix various spelling mistakes I noticed while working on
the code base.

Patch #4 fixes a general protection fault by bailing out when the error
occurs and warning.

Patch #5 fixes the warning.

Patch #6 fixes ACL scale regression and firmware errors.

See the commit messages for more info.
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
Petr Machata says:

====================
Allow configuration of multipath hash seed

Let me just quote the commit message of patch #2 here to inform the
motivation and some of the implementation:

    When calculating hashes for the purpose of multipath forwarding,
    both IPv4 and IPv6 code currently fall back on
    flow_hash_from_keys(). That uses a randomly-generated seed. That's a
    fine choice by default, but unfortunately some deployments may need
    a tighter control over the seed used.

    In this patchset, make the seed configurable by adding a new sysctl
    key, net.ipv4.fib_multipath_hash_seed to control the seed. This seed
    is used specifically for multipath forwarding and not for the other
    concerns that flow_hash_from_keys() is used for, such as queue
    selection. Expose the knob as sysctl because other such settings,
    such as headers to hash, are also handled that way.

    Despite being placed in the net.ipv4 namespace, the multipath seed
    sysctl is used for both IPv4 and IPv6, similarly to e.g. a number of
    TCP variables. Like those, the multipath hash seed is a per-netns
    variable.

    The seed used by flow_hash_from_keys() is a 128-bit quantity.
    However it seems that usually the seed is a much more modest value.
    32 bits seem typical (Cisco, Cumulus), some systems go even lower.
    For that reason, and to decouple the user interface from
    implementation details, go with a 32-bit quantity, which is then
    quadruplicated to form the siphash key.

One example of use of this interface is avoiding hash polarization,
where two ECMP routers, one behind the other, happen to make consistent
hashing decisions, and as a result, part of the ECMP space of the latter
router is never used. Another is a load balancer where several machines
forward traffic to one of a number of leaves, and the forwarding
decisions need to be made consistently. (This is a case of a desired
hash polarization, mentioned e.g. in chapter 6.3 of [0].)

There has already been a proposal to include a hash seed control
interface in the past[1].

- Patches #1-#2 contain the substance of the work
- Patch #3 is an mlxsw offload
- Patches #4 and #5 are a selftest

[0] https://www.usenix.org/system/files/conference/nsdi18/nsdi18-araujo.pdf
[1] https://lore.kernel.org/netdev/YIlVpYMCn%2F8WfE1P@rnd/
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
The syzbot fuzzer found that the interrupt-URB completion callback in
the cdc-wdm driver was taking too long, and the driver's immediate
resubmission of interrupt URBs with -EPROTO status combined with the
dummy-hcd emulation to cause a CPU lockup:

cdc_wdm 1-1:1.0: nonzero urb status received: -71
cdc_wdm 1-1:1.0: wdm_int_callback - 0 bytes
watchdog: BUG: soft lockup - CPU#0 stuck for 26s! [syz-executor782:6625]
CPU#0 Utilization every 4s during lockup:
	#1:  98% system,	  0% softirq,	  3% hardirq,	  0% idle
	#2:  98% system,	  0% softirq,	  3% hardirq,	  0% idle
	#3:  98% system,	  0% softirq,	  3% hardirq,	  0% idle
	#4:  98% system,	  0% softirq,	  3% hardirq,	  0% idle
	#5:  98% system,	  1% softirq,	  3% hardirq,	  0% idle
Modules linked in:
irq event stamp: 73096
hardirqs last  enabled at (73095): [<ffff80008037bc00>] console_emit_next_record kernel/printk/printk.c:2935 [inline]
hardirqs last  enabled at (73095): [<ffff80008037bc00>] console_flush_all+0x650/0xb74 kernel/printk/printk.c:2994
hardirqs last disabled at (73096): [<ffff80008af10b00>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline]
hardirqs last disabled at (73096): [<ffff80008af10b00>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551
softirqs last  enabled at (73048): [<ffff8000801ea530>] softirq_handle_end kernel/softirq.c:400 [inline]
softirqs last  enabled at (73048): [<ffff8000801ea530>] handle_softirqs+0xa60/0xc34 kernel/softirq.c:582
softirqs last disabled at (73043): [<ffff800080020de8>] __do_softirq+0x14/0x20 kernel/softirq.c:588
CPU: 0 PID: 6625 Comm: syz-executor782 Tainted: G        W          6.10.0-rc2-syzkaller-g8867bbd4a056 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024

Testing showed that the problem did not occur if the two error
messages -- the first two lines above -- were removed; apparently adding
material to the kernel log takes a surprisingly large amount of time.

In any case, the best approach for preventing these lockups and to
avoid spamming the log with thousands of error messages per second is
to ratelimit the two dev_err() calls.  Therefore we replace them with
dev_err_ratelimited().

Signed-off-by: Alan Stern <[email protected]>
Suggested-by: Greg KH <[email protected]>
Reported-and-tested-by: [email protected]
Closes: https://lore.kernel.org/linux-usb/[email protected]/
Reported-and-tested-by: [email protected]
Closes: https://lore.kernel.org/linux-usb/[email protected]/
Fixes: 9908a32 ("USB: remove err() macro from usb class drivers")
Link: https://lore.kernel.org/linux-usb/[email protected]/
Cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
Petr Machata says:

====================
mlxsw: Handle MTU values

Amit Cohen writes:

The driver uses two values for maximum MTU, but neither is accurate.
In addition, the value which is configured to hardware is not calculated
correctly. Handle these issues and expose accurate values for minimum
and maximum MTU per netdevice.

Add test cases to check that the exposed values are really supported.

Patch set overview:
Patches #1-#3 set the driver to use accurate values for MTU
Patch #4 aligns the driver to always use the same value for maximum MTU
Patch #5 adds a test
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
Luis has been reporting an assert failure when freeing an inode
cluster during inode inactivation for a while. The assert looks
like:

 XFS: Assertion failed: bp->b_flags & XBF_DONE, file: fs/xfs/xfs_trans_buf.c, line: 241
 ------------[ cut here ]------------
 kernel BUG at fs/xfs/xfs_message.c:102!
 Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
 CPU: 4 PID: 73 Comm: kworker/4:1 Not tainted 6.10.0-rc1 #4
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
 Workqueue: xfs-inodegc/loop5 xfs_inodegc_worker [xfs]
 RIP: 0010:assfail (fs/xfs/xfs_message.c:102) xfs
 RSP: 0018:ffff88810188f7f0 EFLAGS: 00010202
 RAX: 0000000000000000 RBX: ffff88816e748250 RCX: 1ffffffff844b0e7
 RDX: 0000000000000004 RSI: ffff88810188f558 RDI: ffffffffc2431fa0
 RBP: 1ffff11020311f01 R08: 0000000042431f9f R09: ffffed1020311e9b
 R10: ffff88810188f4df R11: ffffffffac725d70 R12: ffff88817a3f4000
 R13: ffff88812182f000 R14: ffff88810188f998 R15: ffffffffc2423f80
 FS:  0000000000000000(0000) GS:ffff8881c8400000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 000055fe9d0f109c CR3: 000000014426c002 CR4: 0000000000770ef0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
 PKRU: 55555554
 Call Trace:
  <TASK>
 xfs_trans_read_buf_map (fs/xfs/xfs_trans_buf.c:241 (discriminator 1)) xfs
 xfs_imap_to_bp (fs/xfs/xfs_trans.h:210 fs/xfs/libxfs/xfs_inode_buf.c:138) xfs
 xfs_inode_item_precommit (fs/xfs/xfs_inode_item.c:145) xfs
 xfs_trans_run_precommits (fs/xfs/xfs_trans.c:931) xfs
 __xfs_trans_commit (fs/xfs/xfs_trans.c:966) xfs
 xfs_inactive_ifree (fs/xfs/xfs_inode.c:1811) xfs
 xfs_inactive (fs/xfs/xfs_inode.c:2013) xfs
 xfs_inodegc_worker (fs/xfs/xfs_icache.c:1841 fs/xfs/xfs_icache.c:1886) xfs
 process_one_work (kernel/workqueue.c:3231)
 worker_thread (kernel/workqueue.c:3306 (discriminator 2) kernel/workqueue.c:3393 (discriminator 2))
 kthread (kernel/kthread.c:389)
 ret_from_fork (arch/x86/kernel/process.c:147)
 ret_from_fork_asm (arch/x86/entry/entry_64.S:257)
  </TASK>

And occurs when the the inode precommit handlers is attempt to look
up the inode cluster buffer to attach the inode for writeback.

The trail of logic that I can reconstruct is as follows.

	1. the inode is clean when inodegc runs, so it is not
	   attached to a cluster buffer when precommit runs.

	2. #1 implies the inode cluster buffer may be clean and not
	   pinned by dirty inodes when inodegc runs.

	3. #2 implies that the inode cluster buffer can be reclaimed
	   by memory pressure at any time.

	4. The assert failure implies that the cluster buffer was
	   attached to the transaction, but not marked done. It had
	   been accessed earlier in the transaction, but not marked
	   done.

	5. #4 implies the cluster buffer has been invalidated (i.e.
	   marked stale).

	6. #5 implies that the inode cluster buffer was instantiated
	   uninitialised in the transaction in xfs_ifree_cluster(),
	   which only instantiates the buffers to invalidate them
	   and never marks them as done.

Given factors 1-3, this issue is highly dependent on timing and
environmental factors. Hence the issue can be very difficult to
reproduce in some situations, but highly reliable in others. Luis
has an environment where it can be reproduced easily by g/531 but,
OTOH, I've reproduced it only once in ~2000 cycles of g/531.

I think the fix is to have xfs_ifree_cluster() set the XBF_DONE flag
on the cluster buffers, even though they may not be initialised. The
reasons why I think this is safe are:

	1. A buffer cache lookup hit on a XBF_STALE buffer will
	   clear the XBF_DONE flag. Hence all future users of the
	   buffer know they have to re-initialise the contents
	   before use and mark it done themselves.

	2. xfs_trans_binval() sets the XFS_BLI_STALE flag, which
	   means the buffer remains locked until the journal commit
	   completes and the buffer is unpinned. Hence once marked
	   XBF_STALE/XFS_BLI_STALE by xfs_ifree_cluster(), the only
	   context that can access the freed buffer is the currently
	   running transaction.

	3. #2 implies that future buffer lookups in the currently
	   running transaction will hit the transaction match code
	   and not the buffer cache. Hence XBF_STALE and
	   XFS_BLI_STALE will not be cleared unless the transaction
	   initialises and logs the buffer with valid contents
	   again. At which point, the buffer will be marked marked
	   XBF_DONE again, so having XBF_DONE already set on the
	   stale buffer is a moot point.

	4. #2 also implies that any concurrent access to that
	   cluster buffer will block waiting on the buffer lock
	   until the inode cluster has been fully freed and is no
	   longer an active inode cluster buffer.

	5. #4 + #1 means that any future user of the disk range of
	   that buffer will always see the range of disk blocks
	   covered by the cluster buffer as not done, and hence must
	   initialise the contents themselves.

	6. Setting XBF_DONE in xfs_ifree_cluster() then means the
	   unlinked inode precommit code will see a XBF_DONE buffer
	   from the transaction match as it expects. It can then
	   attach the stale but newly dirtied inode to the stale
	   but newly dirtied cluster buffer without unexpected
	   failures. The stale buffer will then sail through the
	   journal and do the right thing with the attached stale
	   inode during unpin.

Hence the fix is just one line of extra code. The explanation of
why we have to set XBF_DONE in xfs_ifree_cluster, OTOH, is long and
complex....

Fixes: 82842fe ("xfs: fix AGF vs inode cluster buffer deadlock")
Signed-off-by: Dave Chinner <[email protected]>
Tested-by: Luis Chamberlain <[email protected]>
Reviewed-by: Christoph Hellwig <[email protected]>
Reviewed-by: Darrick J. Wong <[email protected]>
Signed-off-by: Chandan Babu R <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
Petr Machata says:

====================
mlxsw: Use page pool for Rx buffers allocation

Amit Cohen  writes:

After using NAPI to process events from hardware, the next step is to
use page pool for Rx buffers allocation, which is also enhances
performance.

To simplify this change, first use page pool to allocate one continuous
buffer for each packet, later memory consumption can be improved by using
fragmented buffers.

This set significantly enhances mlxsw driver performance, CPU can handle
about 370% of the packets per second it previously handled.

The next planned improvement is using XDP to optimize telemetry.

Patch set overview:
Patches #1-#2 are small preparations for page pool usage
Patch #3 initializes page pool, but do not use it
Patch #4 converts the driver to use page pool for buffers allocations
Patch #5 is an optimization for buffer access
Patch #6 cleans up an unused structure
Patch #7 uses napi_consume_skb() as part of Tx completion
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
…git/netfilter/nf

Pablo Neira Ayuso says:

====================
Netfilter fixes for net

The following patchset contains Netfilter fixes for net:

Patch #1 fixes the suspicious RCU usage warning that resulted from the
	 recent fix for the race between namespace cleanup and gc in
	 ipset left out checking the pernet exit phase when calling
	 rcu_dereference_protected(), from Jozsef Kadlecsik.

Patch #2 fixes incorrect input and output netdevice in SRv6 prerouting
	 hooks, from Jianguo Wu.

Patch #3 moves nf_hooks_lwtunnel sysctl toggle to the netfilter core.
	 The connection tracking system is loaded on-demand, this
	 ensures availability of this knob regardless.

Patch #4-#5 adds selftests for SRv6 netfilter hooks also from Jianguo Wu.

netfilter pull request 24-06-19

* tag 'nf-24-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf:
  selftests: add selftest for the SRv6 End.DX6 behavior with netfilter
  selftests: add selftest for the SRv6 End.DX4 behavior with netfilter
  netfilter: move the sysctl nf_hooks_lwtunnel into the netfilter core
  seg6: fix parameter passing when calling NF_HOOK() in End.DX4 and End.DX6 behaviors
  netfilter: ipset: Fix suspicious rcu_dereference_protected()
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Paolo Abeni <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
The code in ocfs2_dio_end_io_write() estimates number of necessary
transaction credits using ocfs2_calc_extend_credits().  This however does
not take into account that the IO could be arbitrarily large and can
contain arbitrary number of extents.

Extent tree manipulations do often extend the current transaction but not
in all of the cases.  For example if we have only single block extents in
the tree, ocfs2_mark_extent_written() will end up calling
ocfs2_replace_extent_rec() all the time and we will never extend the
current transaction and eventually exhaust all the transaction credits if
the IO contains many single block extents.  Once that happens a
WARN_ON(jbd2_handle_buffer_credits(handle) <= 0) is triggered in
jbd2_journal_dirty_metadata() and subsequently OCFS2 aborts in response to
this error.  This was actually triggered by one of our customers on a
heavily fragmented OCFS2 filesystem.

To fix the issue make sure the transaction always has enough credits for
one extent insert before each call of ocfs2_mark_extent_written().

Heming Zhao said:

------
PANIC: "Kernel panic - not syncing: OCFS2: (device dm-1): panic forced after error"

PID: xxx  TASK: xxxx  CPU: 5  COMMAND: "SubmitThread-CA"
  #0 machine_kexec at ffffffff8c069932
  #1 __crash_kexec at ffffffff8c1338fa
  #2 panic at ffffffff8c1d69b9
  #3 ocfs2_handle_error at ffffffffc0c86c0c [ocfs2]
  #4 __ocfs2_abort at ffffffffc0c88387 [ocfs2]
  #5 ocfs2_journal_dirty at ffffffffc0c51e98 [ocfs2]
  #6 ocfs2_split_extent at ffffffffc0c27ea3 [ocfs2]
  #7 ocfs2_change_extent_flag at ffffffffc0c28053 [ocfs2]
  #8 ocfs2_mark_extent_written at ffffffffc0c28347 [ocfs2]
  #9 ocfs2_dio_end_io_write at ffffffffc0c2bef9 [ocfs2]
#10 ocfs2_dio_end_io at ffffffffc0c2c0f5 [ocfs2]
#11 dio_complete at ffffffff8c2b9fa7
#12 do_blockdev_direct_IO at ffffffff8c2bc09f
#13 ocfs2_direct_IO at ffffffffc0c2b653 [ocfs2]
#14 generic_file_direct_write at ffffffff8c1dcf14
#15 __generic_file_write_iter at ffffffff8c1dd07b
#16 ocfs2_file_write_iter at ffffffffc0c49f1f [ocfs2]
#17 aio_write at ffffffff8c2cc72e
#18 kmem_cache_alloc at ffffffff8c248dde
#19 do_io_submit at ffffffff8c2ccada
#20 do_syscall_64 at ffffffff8c004984
#21 entry_SYSCALL_64_after_hwframe at ffffffff8c8000ba

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: c15471f ("ocfs2: fix sparse file & data ordering issue in direct io")
Signed-off-by: Jan Kara <[email protected]>
Reviewed-by: Joseph Qi <[email protected]>
Reviewed-by: Heming Zhao <[email protected]>
Cc: Mark Fasheh <[email protected]>
Cc: Joel Becker <[email protected]>
Cc: Junxiao Bi <[email protected]>
Cc: Changwei Ge <[email protected]>
Cc: Gang He <[email protected]>
Cc: Jun Piao <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
Danielle Ratson says:

====================
Add ability to flash modules' firmware

CMIS compliant modules such as QSFP-DD might be running a firmware that
can be updated in a vendor-neutral way by exchanging messages between
the host and the module as described in section 7.2.2 of revision
4.0 of the CMIS standard.

According to the CMIS standard, the firmware update process is done
using a CDB commands sequence.

CDB (Command Data Block Message Communication) reads and writes are
performed on memory map pages 9Fh-AFh according to the CMIS standard,
section 8.12 of revision 4.0.

Add a pair of new ethtool messages that allow:

* User space to trigger firmware update of transceiver modules

* The kernel to notify user space about the progress of the process

The user interface is designed to be asynchronous in order to avoid RTNL
being held for too long and to allow several modules to be updated
simultaneously. The interface is designed with CMIS compliant modules in
mind, but kept generic enough to accommodate future use cases, if these
arise.

The kernel interface that will implement the firmware update using CDB
command will include 2 layers that will be added under ethtool:

* The upper layer that will be triggered from the module layer, is
 cmis_ fw_update.
* The lower one is cmis_cdb.

In the future there might be more operations to implement using CDB
commands. Therefore, the idea is to keep the cmis_cdb interface clean and
the cmis_fw_update specific to the cdb commands handling it.

The communication between the kernel and the driver will be done using
two ethtool operations that enable reading and writing the transceiver
module EEPROM.
The operation ethtool_ops::get_module_eeprom_by_page, that is already
implemented, will be used for reading from the EEPROM the CDB reply,
e.g. reading module setting, state, etc.
The operation ethtool_ops::set_module_eeprom_by_page, that is added in
the current patchset, will be used for writing to the EEPROM the CDB
command such as start firmware image, run firmware image, etc.

Therefore in order for a driver to implement module flashing, that
driver needs to implement the two functions mentioned above.

Patchset overview:
Patch #1-#2: Implement the EEPROM writing in mlxsw.
Patch #3: Define the interface between the kernel and user space.
Patch #4: Add ability to notify the flashing firmware progress.
Patch #5: Veto operations during flashing.
Patch #6: Add extended compliance codes.
Patch #7: Add the cdb layer.
Patch #8: Add the fw_update layer.
Patch #9: Add ability to flash transceiver modules' firmware.

v8:
	Patch #7:
	* In the ethtool_cmis_wait_for_cond() evaluate the condition once more
	  to decide if the error code should be -ETIMEDOUT or something else.
	* s/netdev_err/netdev_err_once.

v7:
	Patch #4:
		* Return -ENOMEM instead of PTR_ERR(attr) on
		  ethnl_module_fw_flash_ntf_put_err().
	Patch #9:
		* Fix Warning for not unlocking the spin_lock in the error flow
          	  on module_flash_fw_work_list_add().
		* Avoid the fall-through on ethnl_sock_priv_destroy().

v6:
	* Squash some of the last patch to patch #5 and patch #9.
	Patch #3:
		* Add paragraph in .rst file.
	Patch #4:
		* Reserve '1' more place on SKB for NUL terminator in
		  the error message string.
		* Add more prints on error flow, re-write the printing
		  function and add ethnl_module_fw_flash_ntf_put_err().
		* Change the communication method so notification will be
		  sent in unicast instead of multicast.
		* Add new 'struct ethnl_module_fw_flash_ntf_params' that holds
		  the relevant info for unicast communication and use it to
		  send notification to the specific socket.
		* s/nla_put_u64_64bit/nla_put_uint/
	Patch #7:
		* In ethtool_cmis_cdb_init(), Use 'const' for the 'params'
		  parameter.
	Patch #8:
		* Add a list field to struct ethtool_module_fw_flash for
		  module_fw_flash_work_list that will be presented in the next
		  patch.
		* Move ethtool_cmis_fw_update() cleaning to a new function that
		  will be represented in the next patch.
		* Move some of the fields in struct ethtool_module_fw_flash to
		  a separate struct, so ethtool_cmis_fw_update() will get only
		  the relevant parameters for it.
		* Edit the relevant functions to get the relevant params for
		  them.
		* s/CMIS_MODULE_READY_MAX_DURATION_USEC/CMIS_MODULE_READY_MAX_DURATION_MSEC
	Patch #9:
		* Add a paragraph in the commit message.
		* Rename labels in module_flash_fw_schedule().
		* Add info to genl_sk_priv_*() and implement the relevant
		  callbacks, in order to handle properly a scenario of closing
		  the socket from user space before the work item was ended.
		* Add a list the holds all the ethtool_module_fw_flash struct
		  that corresponds to the in progress work items.
		* Add a new enum for the socket types.
		* Use both above to identify a flashing socket, add it to the
		  list and when closing socket affect only the flashing type.
		* Create a new function that will get the work item instead of
		  ethtool_cmis_fw_update().
		* Edit the relevant functions to get the relevant params for
		  them.
		* The new function will call the old ethtool_cmis_fw_update(),
		  and do the cleaning, so the existence of the list should be
		  completely isolated in module.c.
===================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jul 10, 2024
…play

During inode logging (and log replay too), we are holding a transaction
handle and we often need to call btrfs_iget(), which will read an inode
from its subvolume btree if it's not loaded in memory and that results in
allocating an inode with GFP_KERNEL semantics at the btrfs_alloc_inode()
callback - and this may recurse into the filesystem in case we are under
memory pressure and attempt to commit the current transaction, resulting
in a deadlock since the logging (or log replay) task is holding a
transaction handle open.

Syzbot reported this with the following stack traces:

  WARNING: possible circular locking dependency detected
  6.10.0-rc2-syzkaller-00361-g061d1af7b030 #0 Not tainted
  ------------------------------------------------------
  syz-executor.1/9919 is trying to acquire lock:
  ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: might_alloc include/linux/sched/mm.h:334 [inline]
  ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: slab_pre_alloc_hook mm/slub.c:3891 [inline]
  ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: slab_alloc_node mm/slub.c:3981 [inline]
  ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020

  but task is already holding lock:
  ffff88804b569358 (&ei->log_mutex){+.+.}-{3:3}, at: btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #3 (&ei->log_mutex){+.+.}-{3:3}:
         __mutex_lock_common kernel/locking/mutex.c:608 [inline]
         __mutex_lock+0x175/0x9c0 kernel/locking/mutex.c:752
         btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481
         btrfs_log_inode_parent+0x8cb/0x2a90 fs/btrfs/tree-log.c:7079
         btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180
         btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959
         vfs_fsync_range+0x141/0x230 fs/sync.c:188
         generic_write_sync include/linux/fs.h:2794 [inline]
         btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705
         new_sync_write fs/read_write.c:497 [inline]
         vfs_write+0x6b6/0x1140 fs/read_write.c:590
         ksys_write+0x12f/0x260 fs/read_write.c:643
         do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
         __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
         do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
         entry_SYSENTER_compat_after_hwframe+0x84/0x8e

  -> #2 (btrfs_trans_num_extwriters){++++}-{0:0}:
         join_transaction+0x164/0xf40 fs/btrfs/transaction.c:315
         start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700
         btrfs_commit_super+0xa1/0x110 fs/btrfs/disk-io.c:4170
         close_ctree+0xcb0/0xf90 fs/btrfs/disk-io.c:4324
         generic_shutdown_super+0x159/0x3d0 fs/super.c:642
         kill_anon_super+0x3a/0x60 fs/super.c:1226
         btrfs_kill_super+0x3b/0x50 fs/btrfs/super.c:2096
         deactivate_locked_super+0xbe/0x1a0 fs/super.c:473
         deactivate_super+0xde/0x100 fs/super.c:506
         cleanup_mnt+0x222/0x450 fs/namespace.c:1267
         task_work_run+0x14e/0x250 kernel/task_work.c:180
         resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
         exit_to_user_mode_loop kernel/entry/common.c:114 [inline]
         exit_to_user_mode_prepare include/linux/entry-common.h:328 [inline]
         __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
         syscall_exit_to_user_mode+0x278/0x2a0 kernel/entry/common.c:218
         __do_fast_syscall_32+0x80/0x120 arch/x86/entry/common.c:389
         do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
         entry_SYSENTER_compat_after_hwframe+0x84/0x8e

  -> #1 (btrfs_trans_num_writers){++++}-{0:0}:
         __lock_release kernel/locking/lockdep.c:5468 [inline]
         lock_release+0x33e/0x6c0 kernel/locking/lockdep.c:5774
         percpu_up_read include/linux/percpu-rwsem.h:99 [inline]
         __sb_end_write include/linux/fs.h:1650 [inline]
         sb_end_intwrite include/linux/fs.h:1767 [inline]
         __btrfs_end_transaction+0x5ca/0x920 fs/btrfs/transaction.c:1071
         btrfs_commit_inode_delayed_inode+0x228/0x330 fs/btrfs/delayed-inode.c:1301
         btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291
         evict+0x2ed/0x6c0 fs/inode.c:667
         iput_final fs/inode.c:1741 [inline]
         iput.part.0+0x5a8/0x7f0 fs/inode.c:1767
         iput+0x5c/0x80 fs/inode.c:1757
         dentry_unlink_inode+0x295/0x480 fs/dcache.c:400
         __dentry_kill+0x1d0/0x600 fs/dcache.c:603
         dput.part.0+0x4b1/0x9b0 fs/dcache.c:845
         dput+0x1f/0x30 fs/dcache.c:835
         ovl_stack_put+0x60/0x90 fs/overlayfs/util.c:132
         ovl_destroy_inode+0xc6/0x190 fs/overlayfs/super.c:182
         destroy_inode+0xc4/0x1b0 fs/inode.c:311
         iput_final fs/inode.c:1741 [inline]
         iput.part.0+0x5a8/0x7f0 fs/inode.c:1767
         iput+0x5c/0x80 fs/inode.c:1757
         dentry_unlink_inode+0x295/0x480 fs/dcache.c:400
         __dentry_kill+0x1d0/0x600 fs/dcache.c:603
         shrink_kill fs/dcache.c:1048 [inline]
         shrink_dentry_list+0x140/0x5d0 fs/dcache.c:1075
         prune_dcache_sb+0xeb/0x150 fs/dcache.c:1156
         super_cache_scan+0x32a/0x550 fs/super.c:221
         do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435
         shrink_slab_memcg mm/shrinker.c:548 [inline]
         shrink_slab+0xa87/0x1310 mm/shrinker.c:626
         shrink_one+0x493/0x7c0 mm/vmscan.c:4790
         shrink_many mm/vmscan.c:4851 [inline]
         lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951
         shrink_node mm/vmscan.c:5910 [inline]
         kswapd_shrink_node mm/vmscan.c:6720 [inline]
         balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911
         kswapd+0x5ea/0xbf0 mm/vmscan.c:7180
         kthread+0x2c1/0x3a0 kernel/kthread.c:389
         ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
         ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244

  -> #0 (fs_reclaim){+.+.}-{0:0}:
         check_prev_add kernel/locking/lockdep.c:3134 [inline]
         check_prevs_add kernel/locking/lockdep.c:3253 [inline]
         validate_chain kernel/locking/lockdep.c:3869 [inline]
         __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137
         lock_acquire kernel/locking/lockdep.c:5754 [inline]
         lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719
         __fs_reclaim_acquire mm/page_alloc.c:3801 [inline]
         fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3815
         might_alloc include/linux/sched/mm.h:334 [inline]
         slab_pre_alloc_hook mm/slub.c:3891 [inline]
         slab_alloc_node mm/slub.c:3981 [inline]
         kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020
         btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411
         alloc_inode+0x5d/0x230 fs/inode.c:261
         iget5_locked fs/inode.c:1235 [inline]
         iget5_locked+0x1c9/0x2c0 fs/inode.c:1228
         btrfs_iget_locked fs/btrfs/inode.c:5590 [inline]
         btrfs_iget_path fs/btrfs/inode.c:5607 [inline]
         btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636
         add_conflicting_inode fs/btrfs/tree-log.c:5657 [inline]
         copy_inode_items_to_log+0x1039/0x1e30 fs/btrfs/tree-log.c:5928
         btrfs_log_inode+0xa48/0x4660 fs/btrfs/tree-log.c:6592
         log_new_delayed_dentries fs/btrfs/tree-log.c:6363 [inline]
         btrfs_log_inode+0x27dd/0x4660 fs/btrfs/tree-log.c:6718
         btrfs_log_all_parents fs/btrfs/tree-log.c:6833 [inline]
         btrfs_log_inode_parent+0x22ba/0x2a90 fs/btrfs/tree-log.c:7141
         btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180
         btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959
         vfs_fsync_range+0x141/0x230 fs/sync.c:188
         generic_write_sync include/linux/fs.h:2794 [inline]
         btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705
         do_iter_readv_writev+0x504/0x780 fs/read_write.c:741
         vfs_writev+0x36f/0xde0 fs/read_write.c:971
         do_pwritev+0x1b2/0x260 fs/read_write.c:1072
         __do_compat_sys_pwritev2 fs/read_write.c:1218 [inline]
         __se_compat_sys_pwritev2 fs/read_write.c:1210 [inline]
         __ia32_compat_sys_pwritev2+0x121/0x1b0 fs/read_write.c:1210
         do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
         __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
         do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
         entry_SYSENTER_compat_after_hwframe+0x84/0x8e

  other info that might help us debug this:

  Chain exists of:
    fs_reclaim --> btrfs_trans_num_extwriters --> &ei->log_mutex

   Possible unsafe locking scenario:

         CPU0                    CPU1
         ----                    ----
    lock(&ei->log_mutex);
                                 lock(btrfs_trans_num_extwriters);
                                 lock(&ei->log_mutex);
    lock(fs_reclaim);

   *** DEADLOCK ***

  7 locks held by syz-executor.1/9919:
   #0: ffff88802be20420 (sb_writers#23){.+.+}-{0:0}, at: do_pwritev+0x1b2/0x260 fs/read_write.c:1072
   #1: ffff888065c0f8f0 (&sb->s_type->i_mutex_key#33){++++}-{3:3}, at: inode_lock include/linux/fs.h:791 [inline]
   #1: ffff888065c0f8f0 (&sb->s_type->i_mutex_key#33){++++}-{3:3}, at: btrfs_inode_lock+0xc8/0x110 fs/btrfs/inode.c:385
   #2: ffff888065c0f778 (&ei->i_mmap_lock){++++}-{3:3}, at: btrfs_inode_lock+0xee/0x110 fs/btrfs/inode.c:388
   #3: ffff88802be20610 (sb_internal#4){.+.+}-{0:0}, at: btrfs_sync_file+0x95b/0xe10 fs/btrfs/file.c:1952
   #4: ffff8880546323f0 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x430/0xf40 fs/btrfs/transaction.c:290
   #5: ffff888054632418 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x430/0xf40 fs/btrfs/transaction.c:290
   #6: ffff88804b569358 (&ei->log_mutex){+.+.}-{3:3}, at: btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481

  stack backtrace:
  CPU: 2 PID: 9919 Comm: syz-executor.1 Not tainted 6.10.0-rc2-syzkaller-00361-g061d1af7b030 #0
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
  Call Trace:
   <TASK>
   __dump_stack lib/dump_stack.c:88 [inline]
   dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114
   check_noncircular+0x31a/0x400 kernel/locking/lockdep.c:2187
   check_prev_add kernel/locking/lockdep.c:3134 [inline]
   check_prevs_add kernel/locking/lockdep.c:3253 [inline]
   validate_chain kernel/locking/lockdep.c:3869 [inline]
   __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137
   lock_acquire kernel/locking/lockdep.c:5754 [inline]
   lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719
   __fs_reclaim_acquire mm/page_alloc.c:3801 [inline]
   fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3815
   might_alloc include/linux/sched/mm.h:334 [inline]
   slab_pre_alloc_hook mm/slub.c:3891 [inline]
   slab_alloc_node mm/slub.c:3981 [inline]
   kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020
   btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411
   alloc_inode+0x5d/0x230 fs/inode.c:261
   iget5_locked fs/inode.c:1235 [inline]
   iget5_locked+0x1c9/0x2c0 fs/inode.c:1228
   btrfs_iget_locked fs/btrfs/inode.c:5590 [inline]
   btrfs_iget_path fs/btrfs/inode.c:5607 [inline]
   btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636
   add_conflicting_inode fs/btrfs/tree-log.c:5657 [inline]
   copy_inode_items_to_log+0x1039/0x1e30 fs/btrfs/tree-log.c:5928
   btrfs_log_inode+0xa48/0x4660 fs/btrfs/tree-log.c:6592
   log_new_delayed_dentries fs/btrfs/tree-log.c:6363 [inline]
   btrfs_log_inode+0x27dd/0x4660 fs/btrfs/tree-log.c:6718
   btrfs_log_all_parents fs/btrfs/tree-log.c:6833 [inline]
   btrfs_log_inode_parent+0x22ba/0x2a90 fs/btrfs/tree-log.c:7141
   btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180
   btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959
   vfs_fsync_range+0x141/0x230 fs/sync.c:188
   generic_write_sync include/linux/fs.h:2794 [inline]
   btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705
   do_iter_readv_writev+0x504/0x780 fs/read_write.c:741
   vfs_writev+0x36f/0xde0 fs/read_write.c:971
   do_pwritev+0x1b2/0x260 fs/read_write.c:1072
   __do_compat_sys_pwritev2 fs/read_write.c:1218 [inline]
   __se_compat_sys_pwritev2 fs/read_write.c:1210 [inline]
   __ia32_compat_sys_pwritev2+0x121/0x1b0 fs/read_write.c:1210
   do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
   __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
   do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
   entry_SYSENTER_compat_after_hwframe+0x84/0x8e
  RIP: 0023:0xf7334579
  Code: b8 01 10 06 03 (...)
  RSP: 002b:00000000f5f265ac EFLAGS: 00000292 ORIG_RAX: 000000000000017b
  RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00000000200002c0
  RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000000
  RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000000292 R12: 0000000000000000
  R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000

Fix this by ensuring we are under a NOFS scope whenever we call
btrfs_iget() during inode logging and log replay.

Reported-by: [email protected]
Link: https://lore.kernel.org/linux-btrfs/[email protected]/
Fixes: 712e36c ("btrfs: use GFP_KERNEL in btrfs_alloc_inode")
Reviewed-by: Johannes Thumshirn <[email protected]>
Reviewed-by: Josef Bacik <[email protected]>
Reviewed-by: Qu Wenruo <[email protected]>
Signed-off-by: Filipe Manana <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jul 10, 2024
… __netif_rx()

The following is emitted when using idxd (DSA) dmanegine as the data
mover for ntb_transport that ntb_netdev uses.

[74412.546922] BUG: using smp_processor_id() in preemptible [00000000] code: irq/52-idxd-por/14526
[74412.556784] caller is netif_rx_internal+0x42/0x130
[74412.562282] CPU: 6 PID: 14526 Comm: irq/52-idxd-por Not tainted 6.9.5 #5
[74412.569870] Hardware name: Intel Corporation ArcherCity/ArcherCity, BIOS EGSDCRB1.E9I.1752.P05.2402080856 02/08/2024
[74412.581699] Call Trace:
[74412.584514]  <TASK>
[74412.586933]  dump_stack_lvl+0x55/0x70
[74412.591129]  check_preemption_disabled+0xc8/0xf0
[74412.596374]  netif_rx_internal+0x42/0x130
[74412.600957]  __netif_rx+0x20/0xd0
[74412.604743]  ntb_netdev_rx_handler+0x66/0x150 [ntb_netdev]
[74412.610985]  ntb_complete_rxc+0xed/0x140 [ntb_transport]
[74412.617010]  ntb_rx_copy_callback+0x53/0x80 [ntb_transport]
[74412.623332]  idxd_dma_complete_txd+0xe3/0x160 [idxd]
[74412.628963]  idxd_wq_thread+0x1a6/0x2b0 [idxd]
[74412.634046]  irq_thread_fn+0x21/0x60
[74412.638134]  ? irq_thread+0xa8/0x290
[74412.642218]  irq_thread+0x1a0/0x290
[74412.646212]  ? __pfx_irq_thread_fn+0x10/0x10
[74412.651071]  ? __pfx_irq_thread_dtor+0x10/0x10
[74412.656117]  ? __pfx_irq_thread+0x10/0x10
[74412.660686]  kthread+0x100/0x130
[74412.664384]  ? __pfx_kthread+0x10/0x10
[74412.668639]  ret_from_fork+0x31/0x50
[74412.672716]  ? __pfx_kthread+0x10/0x10
[74412.676978]  ret_from_fork_asm+0x1a/0x30
[74412.681457]  </TASK>

The cause is due to the idxd driver interrupt completion handler uses
threaded interrupt and the threaded handler is not hard or soft interrupt
context. However __netif_rx() can only be called from interrupt context.
Change the call to netif_rx() in order to allow completion via normal
context for dmaengine drivers that utilize threaded irq handling.

While the following commit changed from netif_rx() to __netif_rx(),
baebdf4 ("net: dev: Makes sure netif_rx() can be invoked in any context."),
the change should've been a noop instead. However, the code precedes this
fix should've been using netif_rx_ni() or netif_rx_any_context().

Fixes: 548c237 ("net: Add support for NTB virtual ethernet device")
Reported-by: Jerry Dai <[email protected]>
Tested-by: Jerry Dai <[email protected]>
Signed-off-by: Dave Jiang <[email protected]>
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Jul 18, 2024
Since f663a03 ("bpf, x64: Remove tail call detection"),
tail_call_reachable won't be detected in x86 JIT. And, tail_call_reachable
is provided by verifier.

Therefore, in test_bpf, the tail_call_reachable must be provided in test
cases before running.

Fix and test:

[  174.828662] test_bpf: #0 Tail call leaf jited:1 170 PASS
[  174.829574] test_bpf: #1 Tail call 2 jited:1 244 PASS
[  174.830363] test_bpf: #2 Tail call 3 jited:1 296 PASS
[  174.830924] test_bpf: #3 Tail call 4 jited:1 719 PASS
[  174.831863] test_bpf: #4 Tail call load/store leaf jited:1 197 PASS
[  174.832240] test_bpf: #5 Tail call load/store jited:1 326 PASS
[  174.832240] test_bpf: #6 Tail call error path, max count reached jited:1 2214 PASS
[  174.835713] test_bpf: #7 Tail call count preserved across function calls jited:1 609751 PASS
[  175.446098] test_bpf: #8 Tail call error path, NULL target jited:1 472 PASS
[  175.447597] test_bpf: #9 Tail call error path, index out of range jited:1 206 PASS
[  175.448833] test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

Reported-by: kernel test robot <[email protected]>
Closes: https://lore.kernel.org/oe-lkp/[email protected]
Fixes: f663a03 ("bpf, x64: Remove tail call detection")
Signed-off-by: Leon Hwang <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
BluezTestBot pushed a commit that referenced this issue Sep 12, 2024
…rnel/git/netfilter/nf-next

Pablo Neira Ayuso says:

====================
Netfilter updates for net-next

The following batch contains Netfilter updates for net-next:

Patch #1 fix checksum calculation in nfnetlink_queue with SCTP,
	 segment GSO packet since skb_zerocopy() does not support
	 GSO_BY_FRAGS, from Antonio Ojea.

Patch #2 extend nfnetlink_queue coverage to handle SCTP packets,
	 from Antonio Ojea.

Patch #3 uses consume_skb() instead of kfree_skb() in nfnetlink,
         from Donald Hunter.

Patch #4 adds a dedicate commit list for sets to speed up
	 intra-transaction lookups, from Florian Westphal.

Patch #5 skips removal of element from abort path for the pipapo
         backend, ditching the shadow copy of this datastructure
	 is sufficient.

Patch #6 moves nf_ct_netns_get() out of nf_conncount_init() to
	 let users of conncoiunt decide when to enable conntrack,
	 this is needed by openvswitch, from Xin Long.

Patch #7 pass context to all nft_parse_register_load() in
	 preparation for the next patch.

Patches #8 and #9 reject loads from uninitialized registers from
	 control plane to remove register initialization from
	 datapath. From Florian Westphal.

* tag 'nf-next-24-08-23' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf-next:
  netfilter: nf_tables: don't initialize registers in nft_do_chain()
  netfilter: nf_tables: allow loads only when register is initialized
  netfilter: nf_tables: pass context structure to nft_parse_register_load
  netfilter: move nf_ct_netns_get out of nf_conncount_init
  netfilter: nf_tables: do not remove elements if set backend implements .abort
  netfilter: nf_tables: store new sets in dedicated list
  netfilter: nfnetlink: convert kfree_skb to consume_skb
  selftests: netfilter: nft_queue.sh: sctp coverage
  netfilter: nfnetlink_queue: unbreak SCTP traffic
====================

Link: https://patch.msgid.link/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Sep 12, 2024
Daniel Machon says:

====================
net: microchip: add FDMA library and use it for Sparx5

This patch series is the first of a 2-part series, that adds a new
common FDMA library for Microchip switch chips Sparx5 and lan966x. These
chips share the same FDMA engine, and as such will benefit from a
common library with a common implementation.  This also has the benefit
of removing a lot open-coded bookkeeping and duplicate code for the two
drivers.

Additionally, upstreaming efforts for a third chip, lan969x, will begin
in the near future. This chip will use the new library too.

In this first series, the FDMA library is introduced and used by the
Sparx5 switch driver.

 ###################
 # Example of use: #
 ###################

- Initialize the rx and tx fdma structs with values for: number of
  DCB's, number of DB's, channel ID, DB size (data buffer size), and
  total size of the requested memory. Also provide two callbacks:
  nextptr_cb() and dataptr_cb() for getting the nextptr and dataptr.

- Allocate memory using fdma_alloc_phys() or fdma_alloc_coherent().

- Initialize the DCB's with fdma_dcb_init().

- Add new DCB's with fdma_dcb_add().

- Free memory with fdma_free_phys() or fdma_free_coherent().

 #####################
 # Patch  breakdown: #
 #####################

Patch #1:  introduces library and selects it for Sparx5.

Patch #2:  includes the fdma_api.h header and removes old symbols.

Patch #3:  replaces old rx and tx variables with equivalent ones from the
           fdma struct. Only the variables that can be changed without
           breaking traffic is changed in this patch.

Patch #4:  uses the library for allocation of rx buffers. This requires
           quite a bit of refactoring in this single patch.

Patch #5:  uses the library for adding DCB's in the rx path.

Patch #6:  uses the library for freeing rx buffers.

Patch #7:  uses the library helpers in the rx path.

Patch #8:  uses the library for allocation of tx buffers. This requires
           quite a bit of refactoring in this single patch.

Patch #9:  uses the library for adding DCB's in the tx path.

Patch #10: uses the library helpers in the tx path.

Patch #11: ditches the existing linked list for storing buffer addresses,
           and instead uses offsets into contiguous memory.

Patch #12: modifies existing rx and tx functions to be direction
           independent.
====================

Signed-off-by: David S. Miller <[email protected]>
BluezTestBot pushed a commit that referenced this issue Sep 12, 2024
…rnel/git/netfilter/nf-next

Pablo Neira Ayuso says:

====================
Netfilter updates for net-next

The following patchset contains Netfilter updates for net-next:

Patch #1 adds ctnetlink support for kernel side filtering for
	 deletions, from Changliang Wu.

Patch #2 updates nft_counter support to Use u64_stats_t,
	 from Sebastian Andrzej Siewior.

Patch #3 uses kmemdup_array() in all xtables frontends,
	 from Yan Zhen.

Patch #4 is a oneliner to use ERR_CAST() in nf_conntrack instead
	 opencoded casting, from Shen Lichuan.

Patch #5 removes unused argument in nftables .validate interface,
	 from Florian Westphal.

Patch #6 is a oneliner to correct a typo in nftables kdoc,
	 from Simon Horman.

Patch #7 fixes missing kdoc in nftables, also from Simon.

Patch #8 updates nftables to handle timeout less than CONFIG_HZ.

Patch #9 rejects element expiration if timeout is zero,
	 otherwise it is silently ignored.

Patch #10 disallows element expiration larger than timeout.

Patch #11 removes unnecessary READ_ONCE annotation while mutex is held.

Patch #12 adds missing READ_ONCE/WRITE_ONCE annotation in dynset.

Patch #13 annotates data-races around element expiration.

Patch #14 allocates timeout and expiration in one single set element
	  extension, they are tighly couple, no reason to keep them
	  separated anymore.

Patch #15 updates nftables to interpret zero timeout element as never
	  times out. Note that it is already possible to declare sets
	  with elements that never time out but this generalizes to all
	  kind of set with timeouts.

Patch #16 supports for element timeout and expiration updates.

* tag 'nf-next-24-09-06' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf-next:
  netfilter: nf_tables: set element timeout update support
  netfilter: nf_tables: zero timeout means element never times out
  netfilter: nf_tables: consolidate timeout extension for elements
  netfilter: nf_tables: annotate data-races around element expiration
  netfilter: nft_dynset: annotate data-races around set timeout
  netfilter: nf_tables: remove annotation to access set timeout while holding lock
  netfilter: nf_tables: reject expiration higher than timeout
  netfilter: nf_tables: reject element expiration with no timeout
  netfilter: nf_tables: elements with timeout below CONFIG_HZ never expire
  netfilter: nf_tables: Add missing Kernel doc
  netfilter: nf_tables: Correct spelling in nf_tables.h
  netfilter: nf_tables: drop unused 3rd argument from validate callback ops
  netfilter: conntrack: Convert to use ERR_CAST()
  netfilter: Use kmemdup_array instead of kmemdup for multiple allocation
  netfilter: nft_counter: Use u64_stats_t for statistic.
  netfilter: ctnetlink: support CTA_FILTER for flush
====================

Link: https://patch.msgid.link/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
BluezTestBot pushed a commit that referenced this issue Sep 12, 2024
Daniel Machon says:

====================
net: lan966x: use the newly introduced FDMA library

This patch series is the second of a 2-part series [1], that adds a new
common FDMA library for Microchip switch chips Sparx5 and lan966x. These
chips share the same FDMA engine, and as such will benefit from a common
library with a common implementation.  This also has the benefit of
removing a lot of open-coded bookkeeping and duplicate code for the two
drivers.

In this second series, the FDMA library will be taken into use by the
lan966x switch driver.

 ###################
 # Example of use: #
 ###################

- Initialize the rx and tx fdma structs with values for: number of
  DCB's, number of DB's, channel ID, DB size (data buffer size), and
  total size of the requested memory. Also provide two callbacks:
  nextptr_cb() and dataptr_cb() for getting the nextptr and dataptr.

- Allocate memory using fdma_alloc_phys() or fdma_alloc_coherent().

- Initialize the DCB's with fdma_dcb_init().

- Add new DCB's with fdma_dcb_add().

- Free memory with fdma_free_phys() or fdma_free_coherent().

 #####################
 # Patch  breakdown: #
 #####################

Patch #1:  select FDMA library for lan966x.

Patch #2:  includes the fdma_api.h header and removes old symbols.

Patch #3:  replaces old rx and tx variables with equivalent ones from the
           fdma struct. Only the variables that can be changed without
           breaking traffic is changed in this patch.

Patch #4:  uses the library for allocation of rx buffers. This requires
           quite a bit of refactoring in this single patch.

Patch #5:  uses the library for adding DCB's in the rx path.

Patch #6:  uses the library for freeing rx buffers.

Patch #7:  uses the library for allocation of tx buffers. This requires
           quite a bit of refactoring in this single patch.

Patch #8:  uses the library for adding DCB's in the tx path.

Patch #9:  uses the library helpers in the tx path.

Patch #10: ditch last_in_use variable and use library instead.

Patch #11: uses library helpers throughout.

Patch #12: refactor lan966x_fdma_reload() function.

[1] https://lore.kernel.org/netdev/[email protected]/

Signed-off-by: Daniel Machon <[email protected]>
====================

Link: https://patch.msgid.link/[email protected]
Signed-off-by: Paolo Abeni <[email protected]>
BluezTestBot pushed a commit that referenced this issue Oct 11, 2024
The following handshake mechanism needs be followed after firmware
download is completed to bring the firmware to running state.

After firmware fragments of Operational image are downloaded and
secure sends result of the image succeeds,

1. Driver sends HCI Intel reset with boot option #1 to switch FW image.
2. FW sends Alive GP[0] MSIx
3. Driver enables data path (doorbell 0x460 for RBDs, etc...)
4. Driver gets Bootup event from firmware
5. Driver performs D0 entry to device (WRITE to IPC_Sleep_Control =0x0)
6. FW sends Alive GP[0] MSIx
7. Device host interface is fully set for BT protocol stack operation.
8. Driver may optionally get debug event with ID 0x97 which can be dropped

For Intermediate loadger image, all the above steps are applicable
expcept #5 and #6.

On HCI_OP_RESET, firmware raises alive interrupt. Driver needs to wait
for it before passing control over to bluetooth stack.

Co-developed-by: Devegowda Chandrashekar <[email protected]>
Signed-off-by: Devegowda Chandrashekar <[email protected]>
Signed-off-by: Kiran K <[email protected]>
Signed-off-by: Luiz Augusto von Dentz <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant