forked from udacity/CarND-Behavioral-Cloning-P3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
101 lines (81 loc) · 3.27 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import csv
samples = []
#my root folder for the data
dataFolder = "/home/bogdan/colected_data/workspace"
with open(dataFolder + '/driving_log.csv') as csvfile:
reader = csv.reader(csvfile)
for line in reader:
samples.append(line)
from sklearn.model_selection import train_test_split
train_samples, validation_samples = train_test_split(samples, test_size=0.2)
import cv2
import numpy as np
import sklearn
#define the generator
def generator(samples, batch_size=32):
num_samples = len(samples)
while 1: # Loop forever so the generator never terminates
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset+batch_size]
images = []
angles = []
for batch_sample in batch_samples:
name = dataFolder+'/IMG/'+batch_sample[0].split('/')[-1]
center_image = cv2.imread(name)
center_angle = float(batch_sample[3])
images.append(center_image)
angles.append(center_angle)
# trim image to only see section with road
x_train = np.array(images)
y_train = np.array(angles)
yield sklearn.utils.shuffle(x_train, y_train)
# compile and train the model using the generator function
train_generator = generator(train_samples, batch_size=32)
validation_generator = generator(validation_samples, batch_size=32)
from keras.models import Sequential, Model
from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout
from keras.layers.convolutional import Convolution2D
from keras.layers.pooling import MaxPooling2D
import matplotlib.pyplot as plt
#define the model
def define_network():
model = Sequential()
model.add(Lambda(lambda x: x/255.0 - 0.5, input_shape=(160,320,3)))
model.add( Cropping2D(cropping=((70,25), (0,0))))
model.add(Dropout(0.1))
model.add(Convolution2D(24,5,5,subsample=(2,2),activation="relu"))
model.add(Convolution2D(36,5,5,subsample=(2,2),activation="relu"))
model.add(Convolution2D(48,5,5,subsample=(2,2),activation="relu"))
model.add(Convolution2D(64,3,3,activation="relu"))
model.add(Convolution2D(64,3,3,activation="relu"))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
return model
#train the model
model = define_network()
history_object = model.fit_generator(train_generator,
samples_per_epoch = len(train_samples),
validation_data = validation_generator,
nb_val_samples = len(validation_samples), nb_epoch=3)
model.save('model.h5')
### print the keys contained in the history object
print(history_object.history.keys())
### plot the training and validation loss for each epoch
plt.plot(history_object.history['loss'])
plt.plot(history_object.history['val_loss'])
plt.title('model mean squared error loss')
plt.ylabel('mean squared error loss')
plt.xlabel('epoch')
plt.legend(['training set', 'validation set'], loc='upper right')
plt.show()
exit()
#just a list of shortcuts used by me when working with the model
# python3 clone.py
# python3 drive.py model.h5 run1
# python3 video.py run1 --fps 120
# totem run1.mp4 &