forked from yuyang-huang/keras-inception-resnet-v2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinception_resnet_v2.py
448 lines (394 loc) · 18.8 KB
/
inception_resnet_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# -*- coding: utf-8 -*-
"""Inception-ResNet V2 model for Keras.
Model naming and structure follows TF-slim implementation (which has some additional
layers and different number of filters from the original arXiv paper):
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
Pre-trained ImageNet weights are also converted from TF-slim, which can be found in:
https://github.com/tensorflow/models/tree/master/research/slim#pre-trained-models
# Reference
- [Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
"""
from __future__ import print_function
from __future__ import absolute_import
import warnings
from functools import partial
from keras.models import Model
from keras.layers import Activation
from keras.layers import AveragePooling2D
from keras.layers import BatchNormalization
from keras.layers import Concatenate
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import GlobalAveragePooling2D
from keras.layers import GlobalMaxPooling2D
from keras.layers import Input
from keras.layers import Lambda
from keras.layers import MaxPooling2D
from keras.utils.data_utils import get_file
from keras.engine.topology import get_source_inputs
from keras.applications.imagenet_utils import _obtain_input_shape
from keras import backend as K
BASE_WEIGHT_URL = 'https://github.com/myutwo150/keras-inception-resnet-v2/releases/download/v0.1/'
def preprocess_input(x):
"""Preprocesses a numpy array encoding a batch of images.
This function applies the "Inception" preprocessing which converts
the RGB values from [0, 255] to [-1, 1]. Note that this preprocessing
function is different from `imagenet_utils.preprocess_input()`.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Preprocessed array.
"""
x /= 255.
x -= 0.5
x *= 2.
return x
def conv2d_bn(x,
filters,
kernel_size,
strides=1,
padding='same',
activation='relu',
use_bias=False,
name=None):
"""Utility function to apply conv + BN.
# Arguments
x: input tensor.
filters: filters in `Conv2D`.
kernel_size: kernel size as in `Conv2D`.
padding: padding mode in `Conv2D`.
activation: activation in `Conv2D`.
strides: strides in `Conv2D`.
name: name of the ops; will become `name + '_Activation'`
for the activation and `name + '_BatchNorm'` for the
batch norm layer.
# Returns
Output tensor after applying `Conv2D` and `BatchNormalization`.
"""
x = Conv2D(filters,
kernel_size,
strides=strides,
padding=padding,
use_bias=use_bias,
name=name)(x)
if not use_bias:
bn_axis = 1 if K.image_data_format() == 'channels_first' else 3
bn_name = _generate_layer_name('BatchNorm', prefix=name)
x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
if activation is not None:
ac_name = _generate_layer_name('Activation', prefix=name)
x = Activation(activation, name=ac_name)(x)
return x
def _generate_layer_name(name, branch_idx=None, prefix=None):
"""Utility function for generating layer names.
If `prefix` is `None`, returns `None` to use default automatic layer names.
Otherwise, the returned layer name is:
- PREFIX_NAME if `branch_idx` is not given.
- PREFIX_Branch_0_NAME if e.g. `branch_idx=0` is given.
# Arguments
name: base layer name string, e.g. `'Concatenate'` or `'Conv2d_1x1'`.
branch_idx: an `int`. If given, will add e.g. `'Branch_0'`
after `prefix` and in front of `name` in order to identify
layers in the same block but in different branches.
prefix: string prefix that will be added in front of `name` to make
all layer names unique (e.g. which block this layer belongs to).
# Returns
The layer name.
"""
if prefix is None:
return None
if branch_idx is None:
return '_'.join((prefix, name))
return '_'.join((prefix, 'Branch', str(branch_idx), name))
def _inception_resnet_block(x, scale, block_type, block_idx, activation='relu'):
"""Adds a Inception-ResNet block.
This function builds 3 types of Inception-ResNet blocks mentioned
in the paper, controlled by the `block_type` argument (which is the
block name used in the official TF-slim implementation):
- Inception-ResNet-A: `block_type='Block35'`
- Inception-ResNet-B: `block_type='Block17'`
- Inception-ResNet-C: `block_type='Block8'`
# Arguments
x: input tensor.
scale: scaling factor to scale the residuals before adding
them to the shortcut branch.
block_type: `'Block35'`, `'Block17'` or `'Block8'`, determines
the network structure in the residual branch.
block_idx: used for generating layer names.
activation: name of the activation function to use at the end
of the block (see [activations](../activations.md)).
When `activation=None`, no activation is applied
(i.e., "linear" activation: `a(x) = x`).
# Returns
Output tensor for the block.
# Raises
ValueError: if `block_type` is not one of `'Block35'`,
`'Block17'` or `'Block8'`.
"""
channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
if block_idx is None:
prefix = None
else:
prefix = '_'.join((block_type, str(block_idx)))
name_fmt = partial(_generate_layer_name, prefix=prefix)
if block_type == 'Block35':
branch_0 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 32, 3, name=name_fmt('Conv2d_0b_3x3', 1))
branch_2 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 2))
branch_2 = conv2d_bn(branch_2, 48, 3, name=name_fmt('Conv2d_0b_3x3', 2))
branch_2 = conv2d_bn(branch_2, 64, 3, name=name_fmt('Conv2d_0c_3x3', 2))
branches = [branch_0, branch_1, branch_2]
elif block_type == 'Block17':
branch_0 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 160, [1, 7], name=name_fmt('Conv2d_0b_1x7', 1))
branch_1 = conv2d_bn(branch_1, 192, [7, 1], name=name_fmt('Conv2d_0c_7x1', 1))
branches = [branch_0, branch_1]
elif block_type == 'Block8':
branch_0 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 224, [1, 3], name=name_fmt('Conv2d_0b_1x3', 1))
branch_1 = conv2d_bn(branch_1, 256, [3, 1], name=name_fmt('Conv2d_0c_3x1', 1))
branches = [branch_0, branch_1]
else:
raise ValueError('Unknown Inception-ResNet block type. '
'Expects "Block35", "Block17" or "Block8", '
'but got: ' + str(block_type))
mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches)
up = conv2d_bn(mixed,
K.int_shape(x)[channel_axis],
1,
activation=None,
use_bias=True,
name=name_fmt('Conv2d_1x1'))
x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
output_shape=K.int_shape(x)[1:],
arguments={'scale': scale},
name=name_fmt('ScaleSum'))([x, up])
if activation is not None:
x = Activation(activation, name=name_fmt('Activation'))(x)
return x
def InceptionResNetV2(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
dropout_keep_prob=0.8):
"""Instantiates the Inception-ResNet v2 architecture.
Optionally loads weights pre-trained on ImageNet.
Note that when using TensorFlow, for best performance you should
set `"image_data_format": "channels_last"` in your Keras config
at `~/.keras/keras.json`.
The model and the weights are compatible with both TensorFlow and Theano.
The data format convention used by the model is the one specified in your
Keras config file.
Note that the default input image size for this model is 299x299, instead
of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
function is different (i.e., do not use `imagenet_utils.preprocess_input()`
with this model. Use `preprocess_input()` defined in this module instead).
# Arguments
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization)
or `'imagenet'` (pre-training on ImageNet).
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is `False` (otherwise the input shape
has to be `(299, 299, 3)` (with `channels_last` data format)
or `(3, 299, 299)` (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 139.
E.g. `(150, 150, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the last convolutional layer.
- `'avg'` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `'max'` means that global max pooling will be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is `True`, and
if no `weights` argument is specified.
dropout_keep_prob: dropout keep rate after pooling and before the
classification layer, only to be specified if `include_top` is `True`.
# Returns
A Keras `Model` instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `imagenet` '
'(pre-training on ImageNet).')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as imagenet with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = _obtain_input_shape(
input_shape,
default_size=299,
min_size=139,
data_format=K.image_data_format(),
require_flatten=False,
weights=weights)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
# Stem block: 35 x 35 x 192
x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid', name='Conv2d_1a_3x3')
x = conv2d_bn(x, 32, 3, padding='valid', name='Conv2d_2a_3x3')
x = conv2d_bn(x, 64, 3, name='Conv2d_2b_3x3')
x = MaxPooling2D(3, strides=2, name='MaxPool_3a_3x3')(x)
x = conv2d_bn(x, 80, 1, padding='valid', name='Conv2d_3b_1x1')
x = conv2d_bn(x, 192, 3, padding='valid', name='Conv2d_4a_3x3')
x = MaxPooling2D(3, strides=2, name='MaxPool_5a_3x3')(x)
# Mixed 5b (Inception-A block): 35 x 35 x 320
channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
name_fmt = partial(_generate_layer_name, prefix='Mixed_5b')
branch_0 = conv2d_bn(x, 96, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 48, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 64, 5, name=name_fmt('Conv2d_0b_5x5', 1))
branch_2 = conv2d_bn(x, 64, 1, name=name_fmt('Conv2d_0a_1x1', 2))
branch_2 = conv2d_bn(branch_2, 96, 3, name=name_fmt('Conv2d_0b_3x3', 2))
branch_2 = conv2d_bn(branch_2, 96, 3, name=name_fmt('Conv2d_0c_3x3', 2))
branch_pool = AveragePooling2D(3,
strides=1,
padding='same',
name=name_fmt('AvgPool_0a_3x3', 3))(x)
branch_pool = conv2d_bn(branch_pool, 64, 1, name=name_fmt('Conv2d_0b_1x1', 3))
branches = [branch_0, branch_1, branch_2, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_5b')(branches)
# 10x Block35 (Inception-ResNet-A block): 35 x 35 x 320
for block_idx in range(1, 11):
x = _inception_resnet_block(x,
scale=0.17,
block_type='Block35',
block_idx=block_idx)
# Mixed 6a (Reduction-A block): 17 x 17 x 1088
name_fmt = partial(_generate_layer_name, prefix='Mixed_6a')
branch_0 = conv2d_bn(x,
384,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 0))
branch_1 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 256, 3, name=name_fmt('Conv2d_0b_3x3', 1))
branch_1 = conv2d_bn(branch_1,
384,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 1))
branch_pool = MaxPooling2D(3,
strides=2,
padding='valid',
name=name_fmt('MaxPool_1a_3x3', 2))(x)
branches = [branch_0, branch_1, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_6a')(branches)
# 20x Block17 (Inception-ResNet-B block): 17 x 17 x 1088
for block_idx in range(1, 21):
x = _inception_resnet_block(x,
scale=0.1,
block_type='Block17',
block_idx=block_idx)
# Mixed 7a (Reduction-B block): 8 x 8 x 2080
name_fmt = partial(_generate_layer_name, prefix='Mixed_7a')
branch_0 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 0))
branch_0 = conv2d_bn(branch_0,
384,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 0))
branch_1 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1,
288,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 1))
branch_2 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 2))
branch_2 = conv2d_bn(branch_2, 288, 3, name=name_fmt('Conv2d_0b_3x3', 2))
branch_2 = conv2d_bn(branch_2,
320,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 2))
branch_pool = MaxPooling2D(3,
strides=2,
padding='valid',
name=name_fmt('MaxPool_1a_3x3', 3))(x)
branches = [branch_0, branch_1, branch_2, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_7a')(branches)
# 10x Block8 (Inception-ResNet-C block): 8 x 8 x 2080
for block_idx in range(1, 10):
x = _inception_resnet_block(x,
scale=0.2,
block_type='Block8',
block_idx=block_idx)
x = _inception_resnet_block(x,
scale=1.,
activation=None,
block_type='Block8',
block_idx=10)
# Final convolution block
x = conv2d_bn(x, 1536, 1, name='Conv2d_7b_1x1')
if include_top:
# Classification block
x = GlobalAveragePooling2D(name='AvgPool')(x)
x = Dropout(1.0 - dropout_keep_prob, name='Dropout')(x)
x = Dense(classes, name='Logits')(x)
x = Activation('softmax', name='Predictions')(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D(name='AvgPool')(x)
elif pooling == 'max':
x = GlobalMaxPooling2D(name='MaxPool')(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model
model = Model(inputs, x, name='inception_resnet_v2')
# Load weights
if weights == 'imagenet':
if K.image_data_format() == 'channels_first':
if K.backend() == 'tensorflow':
warnings.warn('You are using the TensorFlow backend, yet you '
'are using the Theano '
'image data format convention '
'(`image_data_format="channels_first"`). '
'For best performance, set '
'`image_data_format="channels_last"` in '
'your Keras config '
'at ~/.keras/keras.json.')
if include_top:
weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
weights_path = get_file(weights_filename,
BASE_WEIGHT_URL + weights_filename,
cache_subdir='models',
md5_hash='e693bd0210a403b3192acc6073ad2e96')
else:
weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
weights_path = get_file(weights_filename,
BASE_WEIGHT_URL + weights_filename,
cache_subdir='models',
md5_hash='d19885ff4a710c122648d3b5c3b684e4')
model.load_weights(weights_path)
return model