-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference_kfold.py
96 lines (82 loc) · 3.66 KB
/
inference_kfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import DataLoader
import pandas as pd
import torch
import torch.nn.functional as F
import numpy as np
import argparse
from tqdm import tqdm
from utilities.main_utilities import *
from dataloader.main_dataloader import *
from dataset.main_dataset import *
from constants import *
def inference(model, tokenized_sent, device):
"""
test dataset을 DataLoader로 만들어 준 후,
batch_size로 나눠 model이 예측 합니다.
"""
dataloader = DataLoader(tokenized_sent, batch_size=16, shuffle=False)
model.eval()
output_pred = []
output_prob = []
for i, data in enumerate(tqdm(dataloader)):
with torch.no_grad():
with torch.cuda.amp.autocast():
outputs = model(
input_ids=data['input_ids'].to(device),
attention_mask=data['attention_mask'].to(device),
token_type_ids=data['token_type_ids'].to(device)
)
logits = outputs[0]
# prob = F.softmax(logits, dim=-1).detach().cpu().numpy()
logits = logits.detach().cpu().numpy()
prob = logits
result = np.argmax(logits, axis=-1)
output_pred.append(result)
output_prob.append(prob)
return np.concatenate(output_pred).tolist(), np.concatenate(output_prob, axis=0).tolist()
def main(args):
"""
주어진 dataset csv 파일과 같은 형태일 경우 inference 가능한 코드입니다.
"""
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load tokenizer
Tokenizer_NAME = args.model
tokenizer = AutoTokenizer.from_pretrained(Tokenizer_NAME)
path_list = []
for K in range(args.fold):
## load my model
MODEL_NAME = os.path.join(BEST_MODEL_DIR, f'{args.model_name}{K}') # model dir.
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
model.parameters
model.to(device)
## load test datset
test_id, test_dataset, test_label = load_test_dataset(TEST_DIR, tokenizer)
Re_test_dataset = RE_Dataset(test_dataset ,test_label)
## predict answer
pred_answer, output_prob = inference(model, Re_test_dataset, device) # model에서 class 추론
pred_answer = num_to_label(pred_answer) # 숫자로 된 class를 원래 문자열 라벨로 변환.
## make csv file with predicted answer
#########################################################
# 아래 directory와 columns의 형태는 지켜주시기 바랍니다.
output = pd.DataFrame({'id':test_id,'pred_label':pred_answer,'probs':output_prob,})
os.makedirs(f'./prediction/{args.model_name}', exist_ok=True)
path = os.path.join(f'./prediction/{args.model_name}', f"submission{K}_ver2.csv")
path_list.append(path)
output.to_csv(path, index=False) # 최종적으로 완성된 예측한 라벨 csv 파일 형태로 저장.
#### 필수!! ##############################################
print('---- Finish! ----')
final_output = voting(path_list)
path = os.path.join(f'./prediction/{args.model_name}', "submission_final.csv")
final_output.to_csv(path, index=False)
print('--------End---------')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model dir
parser.add_argument('--fold', type=int, default=5)
parser.add_argument('--model', type=str, default='klue/roberta-large')
parser.add_argument('--model_name', type=str, default="kfold-augmentation-10p-focal-all_data")
args = parser.parse_args()
print(args)
main(args)