-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
238 lines (209 loc) · 8.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import math
import os
import os.path as osp
import time
from argparse import ArgumentParser
from datetime import timedelta
import torch
import wandb
from dataset import SceneTextDataset, SceneTextRandResizeDataset
from east_dataset import EASTDataset
from model import EAST
from seed_everything import _init_fn, seedEverything # seed를 주는 부분
from torch import cuda
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
seedEverything(2022) # seed를 주는 부분
log_step = 10 # wandb logging을 할 step입니다. 예를 들어 10 step에 1번 로깅합니다.
def parse_args():
parser = ArgumentParser()
# Conventional args
parser.add_argument(
"--data_dir",
type=str,
default=os.environ.get(
"SM_CHANNEL_TRAIN", "../input/data/ICDAR17_Korean"
), # train.json, valid.json 파일이 모두 존재하는 경로로 변경
)
parser.add_argument(
"--model_dir",
type=str,
default=os.environ.get("SM_MODEL_DIR", "trained_models"),
)
parser.add_argument("--device", default="cuda" if cuda.is_available() else "cpu")
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--image_size", type=int, default=1024)
parser.add_argument("--input_size", type=int, default=512)
parser.add_argument("--batch_size", type=int, default=12)
parser.add_argument("--learning_rate", type=float, default=1e-3)
parser.add_argument("--max_epoch", type=int, default=200)
parser.add_argument("--save_interval", type=int, default=5)
args = parser.parse_args()
if args.input_size % 32 != 0:
raise ValueError("`input_size` must be a multiple of 32")
return args
def do_training(
data_dir,
model_dir,
device,
image_size,
input_size,
num_workers,
batch_size,
learning_rate,
max_epoch,
save_interval,
):
wandb.init(
# Set the team where this run will be logged
entity="level2_object-detection-cv14",
# Set the project where this run will be logged
project="data-competition",
# We pass a run name (otherwise it’ll be randomly assigned, like sunshine-lollypop-10)
name=f"baseline",
# Track hyperparameters and run metadata
config={
"num_workers": 4,
"image_size": 1024,
"input_size": 512,
"batch_size": 12,
"learning_rate": 1e-3,
"max_epoch": 200,
"save_interval": 5,
},
)
# Random Ratio Resize Dataset
train_dataset = SceneTextRandResizeDataset(
data_dir, split="train", image_size=image_size, crop_size=input_size
) # data_dir/ufo/train.json 파일이 있어야함.
# Baiseline Dataset
valid_dataset = SceneTextDataset(
data_dir, split="valid", image_size=image_size, crop_size=input_size
) # data_dir/ufo/valid.json 파일이 있어야함.
train_dataset = EASTDataset(train_dataset)
valid_dataset = EASTDataset(valid_dataset)
train_num_batches = math.ceil(len(train_dataset) / batch_size)
valid_num_batches = math.ceil(len(valid_dataset) / batch_size)
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
worker_init_fn=_init_fn,
)
valid_loader = DataLoader(
valid_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
worker_init_fn=_init_fn,
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = EAST()
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = lr_scheduler.MultiStepLR(
optimizer, milestones=[max_epoch // 2], gamma=0.1
)
mean_valid_loss = 999.0 # initialize mean valid loss
for epoch in range(max_epoch):
# train step
model.train()
epoch_loss, epoch_start = 0, time.time()
with tqdm(total=train_num_batches) as pbar:
for step, (img, gt_score_map, gt_geo_map, roi_mask) in enumerate(
train_loader
):
pbar.set_description("[Epoch {}]".format(epoch + 1))
loss, extra_info = model.train_step(
img, gt_score_map, gt_geo_map, roi_mask
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_val = loss.item()
epoch_loss += loss_val
pbar.update(1)
val_dict = {
"train/Cls loss": extra_info["cls_loss"],
"train/Angle loss": extra_info["angle_loss"],
"train/IoU loss": extra_info["iou_loss"],
"train/total loss": loss_val,
}
# Log metrics from your script to W&B
if step % log_step == 0:
lr_dict = {"optimize/learning_rate": scheduler.get_last_lr()[0]}
wandb.log(lr_dict)
wandb.log(val_dict)
pbar.set_postfix(val_dict)
# 한 epoch 종료 시
scheduler.step()
print(
"Mean loss: {:.4f} | Elapsed time: {}".format(
epoch_loss / train_num_batches,
timedelta(seconds=time.time() - epoch_start),
)
)
# validation step
model.eval()
epoch_loss, epoch_cls_loss, epoch_angle_loss, epoch_iou_loss, epoch_start = (
0,
0,
0,
0,
time.time(),
)
with tqdm(total=valid_num_batches) as pbar:
for step, (img, gt_score_map, gt_geo_map, roi_mask) in enumerate(
valid_loader
):
pbar.set_description("[Epoch {}]".format(epoch + 1))
loss, extra_info = model.train_step(
img, gt_score_map, gt_geo_map, roi_mask
)
loss_val = loss.item()
epoch_loss += loss_val # total loss 누적
epoch_cls_loss += extra_info["cls_loss"] # cls loss 누적
epoch_angle_loss += extra_info["angle_loss"] # angle loss 누적
epoch_iou_loss += extra_info["iou_loss"] # iou loss 누적
pbar.update(1)
val_dict = {
"valid/Cls loss": extra_info["cls_loss"],
"valid/Angle loss": extra_info["angle_loss"],
"valid/IoU loss": extra_info["iou_loss"],
"valid/total loss": loss_val,
}
pbar.set_postfix(val_dict)
# epoch 종료 후
val_dict = {
"valid/Cls loss": epoch_cls_loss / valid_num_batches, # 평균 cls loss
"valid/Angle loss": epoch_angle_loss / valid_num_batches, # 평균 angle loss
"valid/IoU loss": epoch_iou_loss / valid_num_batches, # 평균 iou loss
"valid/total loss": epoch_loss / valid_num_batches, # 평균 total loss
}
wandb.log(val_dict)
print(
"Mean loss: {:.4f} | Elapsed time: {}".format(
epoch_loss / valid_num_batches,
timedelta(seconds=time.time() - epoch_start),
)
)
if (epoch + 1) % save_interval == 0:
if not osp.exists(model_dir):
os.makedirs(model_dir)
ckpt_fpath = osp.join(model_dir, f"{wandb.run.name}_{epoch+1}.pth")
torch.save(model.state_dict(), ckpt_fpath)
# save best.pth
if (
mean_valid_loss > epoch_loss / valid_num_batches
): # 이번에 구한 mean val loss가 이전 값보다 더 작다면
mean_valid_loss = epoch_loss / valid_num_batches # 이번에 구한 값으로 업데이트
ckpt_fpath = osp.join(model_dir, "best.pth") # best model 저장
torch.save(model.state_dict(), ckpt_fpath)
wandb.finish()
def main(args):
do_training(**args.__dict__)
if __name__ == "__main__":
args = parse_args()
main(args)