-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
68 lines (50 loc) · 2.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import base64
from io import BytesIO
from flask import Flask, request, jsonify
import cv2
import dlib
import requests
import os
import numpy as np
import urllib.request as urllib
app = Flask(__name__)
dir_path = os.path.dirname(os.path.realpath(__file__))
model_name = '/shape_predictor_68_face_landmarks.dat'
model_path = dir_path + model_name
if os.path.exists(model_path) != True:
print('Could not locate model file, downloading...')
print('Downloading: ' + model_name)
urllib.urlretrieve('https://github.com/italojs/facial-landmarks-recognition/raw/master/shape_predictor_68_face_landmarks.dat', model_path)
print('Starting Face Alignment API...')
# Load the face detection and landmark detection models
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(model_path)
@app.route('/detect_face', methods=['GET'])
def detect_face():
try:
# Receive the URL of the image from the client
image_url = request.args.get('image_url')
# Download the image from the URL
response = requests.get(image_url)
image_data = BytesIO(response.content)
image = cv2.imdecode(np.fromstring(image_data.read(), np.uint8), cv2.IMREAD_COLOR)
# Convert the image to grayscale for face detection
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the grayscale image
faces = detector(gray)
if len(faces) == 0:
return jsonify({'error': 'No faces detected'})
# Find the largest detected face
largest_face = max(faces, key=lambda rect: (rect.right() - rect.left()) * (rect.bottom() - rect.top()))
# Extract 68 facial landmarks for the largest face
landmarks = predictor(gray, largest_face)
# Align the face using dlib's get_face_chip function
aligned_face = dlib.get_face_chip(image, landmarks, size=320)
# Convert the cropped face to a base64-encoded string
_, buffer = cv2.imencode('.jpg', aligned_face)
base64_encoded = base64.b64encode(buffer).decode('utf-8')
return jsonify({'aligned_face_base64': base64_encoded})
except Exception as e:
return jsonify({'error': str(e)})
if __name__ == '__main__':
app.run(debug=True)