-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathBruteSensitivityAnalysis.R
73 lines (52 loc) · 2.36 KB
/
BruteSensitivityAnalysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
## Finally, here is a general but very slow version of Rosenbaum's sensitivity analysis. Here, I am using the harmonic weighted mean difference as a test statistic for tests of the sharp null of no effect.
source(url("http://jakebowers.org/ICPSR/bruteSens.R"))
tmpdat<-na.omit(meddat[,c("nhTrt","HomRate0803","bestfm")])
origProb<-unsplit(tapply(tmpdat$nhTrt,tmpdat$bestfm,mean),tmpdat$bestfm)
library(sampling)
obscoef<-coef(lm(HomRate0803~nhTrt+bestfm,data=tmpdat))[["nhTrt"]]
set.seed(12345)
G1rands<-replicate(5000,biasedsampleStrat(tmpdat$bestfm,origProb))
G1randdist<-apply(G1rands,2,function(newz){
coef(lm(HomRate0803~newz+bestfm,data=tmpdat))[["newz"]]
})
mean(G1randdist<=obscoef)
set.seed(12345)
G2p<-probTC(p=origProb,z=tmpdat$nhTrt,G=2,s=tmpdat$bestfm)
G2rands<-replicate(5000,biasedsampleStrat(tmpdat$bestfm,G2p))
G2randdist<-apply(G2rands,2,function(newz){
coef(lm(HomRate0803~newz+bestfm,data=tmpdat))[["newz"]]
})
mean(G2randdist<=obscoef)
set.seed(12345)
G3p<-probTC(p=origProb,z=tmpdat$nhTrt,G=3,s=tmpdat$bestfm)
G3rands<-replicate(5000,biasedsampleStrat(tmpdat$bestfm,G3p))
G3randdist<-apply(G3rands,2,function(newz){
coef(lm(HomRate0803~newz+bestfm,data=tmpdat))[["newz"]]
})
mean(G3randdist<=obscoef)
set.seed(12345)
G5p<-probTC(p=origProb,z=tmpdat$nhTrt,G=5,s=tmpdat$bestfm)
G5rands<-replicate(5000,biasedsampleStrat(tmpdat$bestfm,G5p))
G5randdist<-apply(G5rands,2,function(newz){
coef(lm(HomRate0803~newz+bestfm,data=tmpdat))[["newz"]]
})
mean(G5randdist<=obscoef)
#Here is a figure showing how the randomization distributions change as the odds of treatment assignment for the treated change:
boxplot(list(G1randdist,G2randdist,G3randdist,G5randdist))
abline(h=obscoef)
#And here are the results for a range of $\Gamma$ --- using the parallel package to speed up computation.
library(parallel)
options(mc.cores=4)
theGs<-c(1,2,3,4,5,10)
sensresults<-mclapply(theGs,function(theG){
##sensresults<-sapply(theGs,function(theG){
message("odds are:",theG,appendLF=FALSE)
set.seed(12345)
Gtop<-probTC(p=origProb,z=tmpdat$nhTrt,G=theG,s=tmpdat$bestfm)
Grands<-replicate(5000,biasedsampleStrat(tmpdat$bestfm,Gtop))
Granddist<-apply(Grands,2,function(newz){
coef(lm(HomRate0803~newz+bestfm,data=tmpdat))[["newz"]]
})
cbind(theG,mean(Granddist<=obscoef))
})
sensresults