-
Notifications
You must be signed in to change notification settings - Fork 9
/
_toc.yml
56 lines (55 loc) · 1.7 KB
/
_toc.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
format: jb-book
root: index
parts:
- chapters:
- url: https://www.bpesquet.fr/mlkatas
title: Machine Learning Katas
- caption: overview
chapters:
- file: overview/introduction_to_machine_learning
- file: overview/machine_learning_in_action
- file: overview/introduction_to_reinforcement_learning
- caption: Fundamentals
chapters:
- file: fundamentals/handling_data
- file: fundamentals/assessing_results
- file: fundamentals/training_models
- caption: Algorithms
chapters:
- file: algorithms/classic_ml
sections:
- file: algorithms/k_nearest_neighbors.ipynb
- file: algorithms/linear_regression
- file: algorithms/logistic_regression
- file: algorithms/decision_trees_and_random_forests
- file: algorithms/bayesian_methods
- file: algorithms/support_vector_machines
- file: algorithms/k_means
- file: algorithms/nn_deep_learning
sections:
- file: algorithms/artificial_neural_networks
- file: algorithms/convolutional_neural_networks
- file: algorithms/recurrent_neural_networks
- file: algorithms/autoencoders
- file: algorithms/neural_style_transfer
- file: algorithms/generative_adversarial_networks
- file: algorithms/transformers
- caption: Engineering
chapters:
- file: engineering/introduction_to_mlops
- file: engineering/machine_learning_issues
- caption: Tools
chapters:
- file: tools/python
sections:
- file: tools/python_ecosystem
- file: tools/python_cheatsheet
- file: tools/python_good_practices
- file: tools/numpy
- file: tools/keras
- file: tools/pytorch
- caption: Reference
chapters:
- file: reference/activation_functions
- file: reference/glossary
- file: reference/acknowledgments