-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsemi_sup_classification.py
981 lines (757 loc) · 38.8 KB
/
semi_sup_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import logging
import datetime
import itertools
import torch
from torch import cuda
import torch.nn as nn
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import numpy as np
import h5py
import time
from optim_n2n import OptimN2N
from data import Dataset
import utils
from preprocess_text import Indexer
import pygrid
def parse_args():
parser = argparse.ArgumentParser()
# Input data
parser.add_argument('--dataset', default='yelp')
parser.add_argument('--train_data', type=str, default='datasets/short_yelp_data/short_yelp.train.txt')
parser.add_argument('--val_data', type=str, default='datasets/short_yelp_data/short_yelp.valid.txt')
parser.add_argument('--test_data', type=str, default='datasets/short_yelp_data/short_yelp.test.txt')
parser.add_argument('--vocab_file', type=str, default='datasets/short_yelp_data/vocab.txt')
parser.add_argument('--label', type=bool, default=True)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--train_from', default='')
parser.add_argument('--use_cache', type=bool, default=True)
# SRI options
parser.add_argument('--z_n_iters', type=int, default=20)
parser.add_argument('--z_step_size', type=float, default=0.8)
parser.add_argument('--z_with_noise', type=int, default=0)
parser.add_argument('--prior_sigma', type=float, default=1.0)
parser.add_argument('--num_z_samples', type=int, default=10)
parser.add_argument('--noise_temp', type=float, default=1.0)
# Model options
parser.add_argument('--latent_dim', default=32, type=int)
parser.add_argument('--enc_word_dim', default=256, type=int)
parser.add_argument('--enc_h_dim', default=256, type=int)
parser.add_argument('--enc_num_layers', default=1, type=int)
parser.add_argument('--dec_word_dim', default=128, type=int)
parser.add_argument('--dec_h_dim', default=512, type=int)
parser.add_argument('--dec_num_layers', default=1, type=int)
parser.add_argument('--dec_dropout', default=0.5, type=float)
parser.add_argument('--model', default='abp', type=str, choices=['abp', 'vae'])
parser.add_argument('--train_n2n', default=1, type=int)
parser.add_argument('--train_kl', default=1, type=int)
parser.add_argument('--train_froim', default='', type=str)
# Optimization options
parser.add_argument('--checkpoint_dir', default='models/ptb')
parser.add_argument('--slurm', default=0, type=int)
parser.add_argument('--warmup', default=10, type=int)
parser.add_argument('--num_epochs', default=12, type=int)
parser.add_argument('--min_epochs', default=15, type=int)
parser.add_argument('--start_epoch', default=0, type=int)
parser.add_argument('--svi_steps', default=10, type=int)
parser.add_argument('--svi_lr1', default=1, type=float)
parser.add_argument('--svi_lr2', default=1, type=float)
parser.add_argument('--eps', default=1e-5, type=float)
parser.add_argument('--decay', default=0, type=int)
parser.add_argument('--momentum', default=0.5, type=float)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--max_grad_norm', default=5, type=float)
parser.add_argument('--svi_max_grad_norm', default=5, type=float)
parser.add_argument('--device', default=1, type=int)
parser.add_argument('--seed', default=8485, type=int)
parser.add_argument('--print_every', type=int, default=100)
parser.add_argument('--sample_every', type=int, default=200)
parser.add_argument('--kl_every', type=int, default=20)
parser.add_argument('--test', type=int, default=0)
# Classification options
parser.add_argument('--cls_train_data', type=str, default='datasets/short_yelp_data/short_yelp.train.100.txt')
parser.add_argument("--discriminator", type=str, default="linear")
parser.add_argument('--ncluster', type=int, default=2)
parser.add_argument('--cls_epochs', type=int, default=100)
parser.add_argument('--cls_update_every', type=int, default=1)
parser.add_argument('--cls_test_nepoch', type=int, default=5)
parser.add_argument("--cls_load_best_epoch", type=int, default=0)
parser.add_argument('--cls_momentum', type=float, default=0, help='sgd momentum')
parser.add_argument('--cls_lr', default=1., type=float)
parser.add_argument('--M', default=5, type=int)
return parser.parse_args()
def create_args_grid():
# TODO add your enumeration of parameters here
# step sizes = [0.2, 0.3, 0.4, 0.5], number of steps = [15, 20], z_with_noise = [0, 1], warmup=[10, 15]
z_step_size = [0.4]
z_n_iters = [40]
z_with_noise = [0]
warmup = [6]
M = [200]
noise_temp = [0.0001]
args_list = [z_step_size, z_n_iters, z_with_noise, warmup, M, noise_temp]
opt_list = []
for i, args in enumerate(itertools.product(*args_list)):
opt_job = {'job_id': int(i), 'status': 'open'}
opt_args = {
'z_step_size': args[0],
'z_n_iters': args[1],
'z_with_noise': args[2],
'warmup': args[3],
'M': args[4],
}
# TODO add your result metric here
opt_result = {'val_nll':0., 'val_rec_abp':0., 'val_kl_abp':0., 'val_ppl_bound_abp':0., 'test_nll':0., 'test_rec_abp':0., 'test_kl_abp':0., 'test_ppl_bound_abp':0., 'cls_loss':0., 'cls_acc':0., 'cls_loss_2':0., 'cls_acc_2':0.}
# opt_list += [{**opt_job, **opt_args, **opt_result}]
opt_list += [merge_dicts(opt_job, opt_args, opt_result)]
return opt_list
def update_job_result(job_opt, job_stats):
# TODO add your result metric here
job_opt['val_nll'] = job_stats['val_nll']
job_opt['val_rec_abp'] = job_stats['val_rec_abp']
job_opt['val_kl_abp'] = job_stats['val_kl_abp']
job_opt['val_ppl_bound_abp'] = job_stats['val_ppl_bound_abp']
job_opt['test_nll'] = job_stats['test_nll']
job_opt['test_rec_abp'] = job_stats['test_rec_abp']
job_opt['test_kl_abp'] = job_stats['test_kl_abp']
job_opt['test_ppl_bound_abp'] = job_stats['test_ppl_bound_abp']
job_opt['cls_loss'] = job_stats['cls_loss']
job_opt['cls_acc'] = job_stats['cls_acc']
job_opt['cls_loss_2'] = job_stats['cls_loss_2']
job_opt['cls_acc_2'] = job_stats['cls_acc_2']
##------------------------------------------------------------------------------------------------------------------##
def _dropout_mask1(x, p=0.5):
mask = torch.ones_like(x)
index2drop = torch.rand_like(mask) < p
mask[index2drop] = 0.
return mask * (1. / (1. - p))
def _dropout_mask2(sent, last_dim, p=0.5):
batch_size, seq_len = sent.size()
seq_len = seq_len - 1
mask = torch.ones((batch_size, seq_len, last_dim), device=sent.device, dtype=torch.float)
index2drop = torch.rand_like(mask) < p
mask[index2drop] = 0.
return mask * (1. / (1. - p))
def dropout_mask(sent, embedding_size, hidden_dim, p=0.5):
in_mask = _dropout_mask2(sent, embedding_size, p=p)
out_mask = _dropout_mask2(sent, hidden_dim, p=p)
return in_mask, out_mask
def dropout(x, p=0.5, mask=None, training=True):
if mask is None:
mask = _dropout_mask1(x, p)
if training:
return x * mask
else:
return x
##------------------------------------------------------------------------------------------------------------------##
class RNNVAE(nn.Module):
def __init__(self, args, vocab_size=10000,
enc_word_dim=512,
enc_h_dim=1024,
enc_num_layers=1,
dec_word_dim=512,
dec_h_dim=1024,
dec_num_layers=1,
dec_dropout=0.5,
latent_dim=32,
max_sequence_length=40,
mode='savae'):
super(RNNVAE, self).__init__()
self.args = args
self.enc_h_dim = enc_h_dim
self.enc_num_layers = enc_num_layers
self.dec_h_dim = dec_h_dim
self.dec_num_layers = dec_num_layers
self.embedding_size = dec_word_dim
self.latent_dim = latent_dim
self.max_sequence_length = max_sequence_length
self.enc_word_vecs = nn.Embedding(vocab_size, enc_word_dim)
self.latent_linear_mean = nn.Linear(enc_h_dim, latent_dim)
self.latent_linear_logvar = nn.Linear(enc_h_dim, latent_dim)
self.enc_rnn = nn.LSTM(enc_word_dim, enc_h_dim, num_layers=enc_num_layers,
batch_first=True)
self.enc = nn.ModuleList([self.enc_word_vecs, self.enc_rnn,
self.latent_linear_mean, self.latent_linear_logvar])
self.dec_word_vecs = nn.Embedding(vocab_size, dec_word_dim)
dec_input_size = dec_word_dim
dec_input_size += latent_dim
self.dec_rnn = nn.LSTM(dec_input_size, dec_h_dim, num_layers=dec_num_layers,
batch_first=True)
# self.input_dropout = nn.Dropout(dec_dropout)
# self.out_dropout = nn.Dropout(dec_dropout)
self.dec_linear = nn.Sequential(*[nn.Linear(dec_h_dim, vocab_size),
nn.LogSoftmax(dim=-1)])
self.dec = nn.ModuleList([self.dec_word_vecs, self.dec_rnn, self.dec_linear])
if latent_dim > 0:
self.latent_hidden_linear = nn.Linear(latent_dim, dec_h_dim)
self.dec.append(self.latent_hidden_linear)
def _enc_forward(self, sent):
word_vecs = self.enc_word_vecs(sent)
h0 = Variable(torch.zeros(self.enc_num_layers, word_vecs.size(0),
self.enc_h_dim).type_as(word_vecs.data))
c0 = Variable(torch.zeros(self.enc_num_layers, word_vecs.size(0),
self.enc_h_dim).type_as(word_vecs.data))
enc_h_states, _ = self.enc_rnn(word_vecs, (h0, c0))
enc_h_states_last = enc_h_states[:, -1]
mean = self.latent_linear_mean(enc_h_states_last)
logvar = self.latent_linear_logvar(enc_h_states_last)
return mean, logvar
def _reparameterize(self, mean, logvar, z=None):
std = logvar.mul(0.5).exp()
if z is None:
z = Variable(torch.cuda.FloatTensor(std.size()).normal_(0, 1))
return z.mul(std) + mean
def infer_z(self, z, sent, beta=1., training=True, in_mask=None, out_mask=None):
args = self.args
target = sent.detach().clone()
target = target[:, 1:]
z_grads_norm = []
# in_mask, out_mask = dropout_mask(sent, self.embedding_size, self.dec_h_dim, p=0.5)
for i in range(args.z_n_iters):
# z = torch.autograd.Variable(z.detach().clone(), requires_grad=True)
z = z.detach().clone()
z.requires_grad = True
assert z.grad is None
logp = self._dec_forward(sent, z, training=training, in_mask=in_mask, out_mask=out_mask) # TODO: turn off dropout in inference?
logp = logp.view(-1, logp.size(2))
nll = F.nll_loss(logp, target.reshape(-1), reduction='sum', ignore_index=0) # TODO remove hard-coding
nll.backward()
z_grad = z.grad.detach().clone()
z = z - 0.5 * args.z_step_size * args.z_step_size * (beta * z + z.grad)
if args.z_with_noise:
z += args.noise_temp * args.z_step_size * torch.randn_like(z)
z_grads_norm.append(torch.norm(z_grad, dim=0).mean().cpu().numpy())
z = z.detach()
return z, z_grads_norm
def _dec_forward(self, sent, q_z, init_h=True, training=True, in_mask=None, out_mask=None):
self.word_vecs = F.dropout(self.dec_word_vecs(sent[:, :-1]), p=0.5, training=training)
if init_h:
self.h0 = Variable(torch.zeros(self.dec_num_layers, self.word_vecs.size(0), self.dec_h_dim).type_as(self.word_vecs.data), requires_grad=False)
self.c0 = Variable(torch.zeros(self.dec_num_layers, self.word_vecs.size(0), self.dec_h_dim).type_as(self.word_vecs.data), requires_grad=False)
else:
self.h0.data.zero_()
self.c0.data.zero_()
if q_z is not None:
q_z_expand = q_z.unsqueeze(1).expand(self.word_vecs.size(0),
self.word_vecs.size(1), q_z.size(1))
dec_input = torch.cat([self.word_vecs, q_z_expand], 2)
else:
dec_input = self.word_vecs
if q_z is not None:
self.h0[-1] = self.latent_hidden_linear(q_z)
memory, _ = self.dec_rnn(dec_input, (self.h0, self.c0))
dec_linear_input = memory.contiguous()
dec_linear_input = F.dropout(dec_linear_input, p=0.5, training=training)
preds = self.dec_linear(dec_linear_input.view(
self.word_vecs.size(0) * self.word_vecs.size(1), -1)).view(
self.word_vecs.size(0), self.word_vecs.size(1), -1)
return preds
def inference(self, device, sos_idx, n=4, z=None, init_h=True, training=True):
if z is None:
batch_size = n
z = torch.randn([batch_size, self.latent_dim], device=device)
else:
batch_size = z.size(0)
if init_h:
self.h0 = torch.zeros((self.dec_num_layers, batch_size, self.dec_h_dim), dtype=torch.float, device=device, requires_grad=False)
self.c0 = torch.zeros((self.dec_num_layers, batch_size, self.dec_h_dim), dtype=torch.float, device=device, requires_grad=False)
else:
self.h0.data.zero_()
self.c0.data.zero_()
self.h0[-1] = self.latent_hidden_linear(z)
generations = torch.zeros(batch_size, self.max_sequence_length, dtype=torch.long, device=device)
input_sequence = torch.tensor([sos_idx] * batch_size, dtype=torch.long, device=device)
hidden = (self.h0, self.c0)
for i in range(self.max_sequence_length):
input_embedding = F.dropout(self.dec_word_vecs(input_sequence).view(batch_size, 1, self.embedding_size), training=training)
dec_input = torch.cat([input_embedding, z.view(batch_size, 1, self.latent_dim)], dim=2) # TODO: project z to embedding space before concat?
output, hidden = self.dec_rnn(dec_input, hidden)
dec_linear_input = output.contiguous()
dec_linear_input = F.dropout(dec_linear_input, training=training) # TODO: this dropout is necessary?
preds = self.dec_linear(dec_linear_input.view(batch_size, self.dec_h_dim))
probs = F.softmax(preds, dim=1)
samples = torch.multinomial(probs, 1)
generations[:, i] = samples.view(-1).data
input_sequence = samples.view(-1)
return generations
##--------------------------------------------------------------------------------------------------------------------##
def train_grid(args_job, output_dir_job, output_dir, return_dict):
logger = setup_logging('main', output_dir, console=True)
args = parse_args()
args = pygrid.overwrite_opt(args, args_job)
set_seed(args.seed)
set_gpu(args.device, deterministic=True)
logger.info(args)
val_nll, val_rec_abp, val_kl_abp, val_ppl_bound_abp, test_nll, test_rec_abp, test_kl_abp, test_ppl_bound_abp, cls_loss, cls_acc, cls_loss_2, cls_acc_2 = train(args, output_dir, logger)
return_dict['stats'] = {'val_nll':val_nll, 'val_rec_abp':val_rec_abp, 'val_kl_abp':val_kl_abp, 'val_ppl_bound_abp':val_ppl_bound_abp, 'test_nll':test_nll, 'test_rec_abp':test_rec_abp, 'test_kl_abp':test_kl_abp, 'test_ppl_bound_abp':test_ppl_bound_abp, 'cls_loss':cls_loss, 'cls_acc':cls_acc, 'cls_loss_2':cls_loss_2, 'cls_acc_2':cls_acc_2}
logger.info('done')
def train(args, output_dir, logger):
device = torch.device('cuda:{}'.format(args.device) if torch.cuda.is_available() else 'cpu')
device_cpu = torch.device('cpu')
args.cls_save_path = '{}/cls'.format(output_dir)
############### data ###############
if args.dataset == 'yelp':
from labeled_data import MonoTextData, VocabEntry
vocab = {}
with open(args.vocab_file) as fvocab:
for i, line in enumerate(fvocab):
vocab[line.strip()] = i
vocab = VocabEntry(vocab)
vocab_size = len(vocab)
train_data_all = MonoTextData(args.train_data, label=args.label, vocab=vocab)
val_data_all = MonoTextData(args.val_data, label=args.label, vocab=vocab)
test_data_all = MonoTextData(args.test_data, label=args.label, vocab=vocab)
train_data, train_labels = train_data_all.create_data_batch_labels(batch_size=args.batch_size, device=device, batch_first=True)
val_data, val_labels = val_data_all.create_data_batch_labels(batch_size=32, device=device, batch_first=True)
test_data, test_labels = test_data_all.create_data_batch_labels(batch_size=32, device=device, batch_first=True)
cls_train_data_all = MonoTextData(args.cls_train_data, label=args.label, vocab=vocab)
cls_train_data, cls_train_labels = cls_train_data_all.create_data_batch_labels(batch_size=args.batch_size, device=device, batch_first=True)
def get_batch(data, i):
sents = data[i]
batch_size, sent_len = sents.size()
length = sent_len - 1
return sents, length, batch_size
else:
train_data = Dataset(args.train_file)
val_data = Dataset(args.val_file)
test_data = Dataset(args.test_file)
vocab_size = int(train_data.vocab_size)
indexer = Indexer()
indexer.load_vocab(args.vocab_file)
def get_batch(data, i):
sents, length, batch_size = data[i]
return sents, length, batch_size
logger.info('Train data: %d batches' % len(train_data))
logger.info('Val data: %d batches' % len(val_data))
logger.info('Test data: %d batches' % len(test_data))
logger.info('Word vocab size: %d' % vocab_size)
############### model ###############
checkpoint_dir = output_dir
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
suffix = "%s_%s.pt" % (args.model, 'bl')
checkpoint_path = os.path.join(checkpoint_dir, suffix)
if args.train_from == '':
model = RNNVAE(args, vocab_size=vocab_size,
enc_word_dim=args.enc_word_dim,
enc_h_dim=args.enc_h_dim,
enc_num_layers=args.enc_num_layers,
dec_word_dim=args.dec_word_dim,
dec_h_dim=args.dec_h_dim,
dec_num_layers=args.dec_num_layers,
dec_dropout=args.dec_dropout,
latent_dim=args.latent_dim,
mode=args.model)
for param in model.parameters():
param.data.uniform_(-0.1, 0.1)
else:
logger.info('loading model from ' + args.train_from)
checkpoint = torch.load(args.train_from)
model = checkpoint['model']
logger.info("model architecture")
logger.info(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.warmup == 0:
args.beta = 1.
else:
args.beta = 0.1
criterion = nn.NLLLoss(ignore_index=0)
model.cuda()
criterion.cuda()
model.train()
def variational_loss(input, sents, model, z=None):
mean, logvar = input
z_samples = model._reparameterize(mean, logvar, z)
preds = model._dec_forward(sents, z_samples)
nll = sum([criterion(preds[:, l], sents[:, l + 1]) for l in range(preds.size(1))])
kl = utils.kl_loss_diag(mean, logvar)
return nll + args.beta * kl
update_params = list(model.dec.parameters())
meta_optimizer = OptimN2N(variational_loss, model, update_params, eps=args.eps,
lr=[args.svi_lr1, args.svi_lr2],
iters=args.svi_steps, momentum=args.momentum,
acc_param_grads=args.train_n2n == 1,
max_grad_norm=args.svi_max_grad_norm)
############### eval with cache ###############
if args.use_cache:
train_data_batch_cache = torch.load('cache/cache_100_labels/train_data_batch_cache_1')
train_labels_batch_cache = torch.load('cache/cache_100_labels/train_labels_batch_cache_1')
test_data_batch_cache = torch.load('cache/cache_100_labels/test_data_batch_cache_1')
test_labels_batch_cache = torch.load('cache/cache_100_labels/test_labels_batch_cache_1')
val_data_batch_cache = torch.load('cache/cache_100_labels/val_data_batch_cache_1')
val_labels_batch_cache = torch.load('cache/cache_100_labels/val_labels_batch_cache_1')
cls_loss, cls_acc = eval_cls(args, logger, model, device, train_data_batch_cache, train_labels_batch_cache, test_data_batch_cache, test_labels_batch_cache, val_data_batch_cache, val_labels_batch_cache)
cls_loss_2 = 0.
cls_acc_2 = 0.
val_nll = 0.
val_rec_abp = 0.
val_kl_abp = 0.
val_ppl_bound_abp = 0.
test_nll = 0.
test_rec_abp = 0.
test_kl_abp = 0.
test_ppl_bound_abp = 0.
return val_nll, val_rec_abp, val_kl_abp, val_ppl_bound_abp, test_nll, test_rec_abp, test_kl_abp, test_ppl_bound_abp, cls_loss, cls_acc, cls_loss_2, cls_acc_2
############### train ###############
t = 0
best_val_nll = 1e5
best_epoch = 0
val_stats = []
epoch = 0
compute_kl = 0
z_means = torch.zeros(5, args.latent_dim, device=device, dtype=torch.float)
while epoch < args.num_epochs:
start_time = time.time()
epoch += 1
logger.info('Starting epoch %d' % epoch)
train_nll_abp = 0.
train_kl_abp = 0.
num_sents = 0
num_words = 0
b = 0
for i in np.random.permutation(len(train_data)):
if args.warmup > 0:
args.beta = min(1., args.beta + 1. / (args.warmup * len(train_data)))
sents, length, batch_size = get_batch(train_data, i)
if args.device >= 0:
sents = sents.cuda()
b += 1
optimizer.zero_grad()
z_0 = sample_p_0(args, sents)
in_mask, out_mask = dropout_mask(sents, args.dec_word_dim, args.dec_h_dim, p=0.5)
z_samples, z_grads = model.infer_z(z_0, sents, args.beta, in_mask=in_mask, out_mask=out_mask)
preds = model._dec_forward(sents, z_samples, in_mask=in_mask, out_mask=out_mask)
nll_abp = sum([criterion(preds[:, l], sents[:, l + 1]) for l in range(length)])
train_nll_abp += nll_abp.item() * batch_size
abp_loss = nll_abp
abp_loss.backward(retain_graph=True)
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm(model.parameters(), args.max_grad_norm)
optimizer.step()
num_sents += batch_size
num_words += batch_size * length
if b % args.sample_every == 0:
z_samples_container = []
for z_i in range(args.num_z_samples):
z_0 = sample_p_0(args, sents)
z_samples, _ = model.infer_z(z_0, sents) # TODO change mask
z_samples_container.append(z_samples)
z_means = torch.stack(z_samples_container, dim=2).mean(dim=2)
if b % args.print_every == 0:
with torch.no_grad():
z_var = ' '.join(['{:10.6f}'.format(_z_var) for _z_var in z_means.std(dim=0).pow(2)])
param_norm = sum([p.norm() ** 2 for p in model.parameters()]).item() ** 0.5
z_grad_t_str = ' '.join(['{:8.2f}'.format(g) for g in z_grads])
z_norm_str = '[{:8.2f} {:8.2f}]'.format(torch.norm(z_0, dim=0).mean(), torch.norm(z_samples, dim=0).mean())
z_disp_str = '{:8.2f}'.format(torch.norm(z_0 - z_samples, dim=0).mean())
logger.info('Iters={}, Epoch={:4d}, Batch={:4d}/{:4d}, LR={:8.6f}, TrainABP_NLL={:10.4f}, TrainABP_REC={:10.4f}, '
'TrainABP_KL={:10.4f}, TrainABP_PPL={:10.4f}, |Param|={:10.4f}, z_norm_str={}, z_grad_t_str={}, z_disp_str={}, z_var={}, '
'BestValPerf={:10.4f}, BestEpoch={:4d}, Beta={:10.4f}'.format(
t, epoch, b + 1, len(train_data), args.lr, (train_nll_abp + train_kl_abp) / num_sents,
train_nll_abp / num_sents, train_kl_abp / num_sents,
np.exp((train_nll_abp + train_kl_abp) / num_words),
param_norm, z_norm_str, z_grad_t_str, z_disp_str, z_var, best_val_nll, best_epoch, args.beta))
epoch_train_time = time.time() - start_time
logger.info('Time Elapsed: %.1fs' % epoch_train_time)
############### eval ###############
compute_kl = 0
val_kl_abp = 0.
val_ppl_bound_abp = 0.
test_kl_abp = 0.
test_ppl_bound_abp = 0.
val_nll, val_rec_abp = eval(args, logger, val_data, get_batch, model, device_cpu, device, compute_kl, meta_optimizer)
test_nll, test_rec_abp = eval(args, logger, test_data, get_batch, model, device_cpu, device, compute_kl, meta_optimizer)
train_data_batch_cache, train_labels_batch_cache = create_cls_data(args, model, cls_train_data, cls_train_labels, args.M, args.latent_dim, device, training=True)
val_data_batch_cache, val_labels_batch_cache = create_cls_data(args, model, val_data, val_labels, args.M, args.latent_dim, device, training=True)
test_data_batch_cache, test_labels_batch_cache = create_cls_data(args, model, test_data, test_labels, args.M, args.latent_dim, device, training=True)
files_to_save = [train_data_batch_cache, train_labels_batch_cache, val_data_batch_cache,
val_labels_batch_cache, test_data_batch_cache, test_labels_batch_cache]
files_names_to_save = ['train_data_batch_cache', 'train_labels_batch_cache', 'val_data_batch_cache',
'val_labels_batch_cache', 'test_data_batch_cache', 'test_labels_batch_cache']
for file, file_name in zip(files_to_save, files_names_to_save):
torch.save(file, os.path.join(output_dir, file_name + '_1'))
cls_loss, cls_acc = eval_cls(args, logger, model, device, train_data_batch_cache, train_labels_batch_cache, test_data_batch_cache, test_labels_batch_cache, val_data_batch_cache, val_labels_batch_cache)
cls_loss_2 = 0.
cls_acc_2 = 0.
return val_nll, val_rec_abp, val_kl_abp, val_ppl_bound_abp, test_nll, test_rec_abp, test_kl_abp, test_ppl_bound_abp, cls_loss, cls_acc, cls_loss_2, cls_acc_2
##--------------------------------------------------------------------------------------------------------------------##
class LinearDiscriminator(nn.Module):
"""docstring for LinearDiscriminator"""
def __init__(self, args):
super(LinearDiscriminator, self).__init__()
self.args = args
self.linear = nn.Linear(args.latent_dim, args.ncluster)
self.loss = nn.CrossEntropyLoss(reduction="none")
def get_performance(self, batch_data, batch_labels):
logits = self.linear(batch_data)
loss = self.loss(logits, batch_labels)
_, pred = torch.max(logits, dim=1)
correct = torch.eq(pred, batch_labels).float().sum().item()
return loss, correct
def create_cls_data(args, model, train_data_batch, train_labels_batch, M, latent_dim, device, training=True):
cls_train_batcth_labels_list = []
cls_train_batch_size_list = []
cls_train_sent_len_list = []
data_size = sum([len(d) for d in train_labels_batch])
cls_train_batch_data_tensor = torch.zeros((data_size, latent_dim, M), dtype=torch.float, device=device)
for rept in range(M):
cls_train_batch_data_list = []
for i in range(len(train_data_batch)):
batch_data = train_data_batch[i]
batch_labels = train_labels_batch[i]
batch_size, sent_len = batch_data.size()
z_0 = sample_p_0(args, batch_data)
z_samples = model.infer_z(z_0, batch_data, training=training)[0].detach().clone()
cls_train_batch_data_list.append(z_samples)
if rept == 0:
cls_train_batcth_labels_list.append(batch_labels)
cls_train_sent_len_list.append(sent_len)
cls_train_batch_size_list.append(batch_size)
cls_train_batch_data_list = torch.cat(cls_train_batch_data_list, dim=0)
cls_train_batch_data_tensor[:, :, rept] = cls_train_batch_data_list
cls_train_batch_data_tensor = cls_train_batch_data_tensor.mean(dim=-1)
cls_train_batch_data_list = []
acc_batch_size = 0
for i in range(len(cls_train_batch_size_list)):
batch_size = cls_train_batch_size_list[i]
batch_data = cls_train_batch_data_tensor[acc_batch_size:acc_batch_size + batch_size, :]
cls_train_batch_data_list.append(batch_data)
acc_batch_size += batch_size
return cls_train_batch_data_list, cls_train_batcth_labels_list
def eval_cls(args, logger, model, device, train_data_batch, train_labels_batch, test_data_batch, test_labels_batch, val_data_batch, val_labels_batch):
discriminator = LinearDiscriminator(args).to(device)
discriminator.train()
opt_dict = {"not_improved": 0, "lr": 1., "best_loss": 1e4}
optimizer = torch.optim.SGD(discriminator.parameters(), lr=args.cls_lr, momentum=args.cls_momentum)
opt_dict['lr'] = args.cls_lr
clip_grad = 5.0
decay_epoch = 2
lr_decay = 0.5
max_decay = 5
log_niter = 100
start = time.time()
best_loss = 1e4
iter_ = 0
decay_cnt = 0
acc_cnt = 1
acc_loss = 0.
for epoch in range(args.cls_epochs):
report_loss = 0
report_correct = report_num_words = report_num_sents = 0
acc_batch_size = 0
optimizer.zero_grad()
for i in np.random.permutation(len(train_data_batch)):
batch_data = train_data_batch[i].to(device)
batch_labels = train_labels_batch[i]
batch_labels = [int(x) for x in batch_labels]
batch_labels = torch.tensor(batch_labels, dtype=torch.long, requires_grad=False, device=device)
batch_size, sent_len = batch_data.size()
# not predict start symbol
report_num_words += (sent_len - 1) * batch_size
report_num_sents += batch_size
acc_batch_size += batch_size
# (batch_size)
loss, correct = discriminator.get_performance(batch_data, batch_labels)
acc_loss = acc_loss + loss.sum()
if acc_cnt % args.cls_update_every == 0:
acc_loss = acc_loss / acc_batch_size
acc_loss.backward()
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), clip_grad)
optimizer.step()
optimizer.zero_grad()
acc_cnt = 0
acc_loss = 0
acc_batch_size = 0
acc_cnt += 1
report_loss += loss.sum().item()
report_correct += correct
if iter_ % log_niter == 0:
# train_loss = (report_rec_loss + report_kl_loss) / report_num_sents
train_loss = report_loss / report_num_sents
logger.info('epoch: %d, iter: %d, avg_loss: %.4f, acc %.4f, time %.2fs' %
(epoch, iter_, train_loss, report_correct / report_num_sents,
time.time() - start))
# sys.stdout.flush()
iter_ += 1
logger.info('lr {}'.format(opt_dict["lr"]))
loss, acc = test(logger, device, discriminator, val_data_batch, val_labels_batch, "VAL", args)
if loss < best_loss:
logger.info('update best loss')
best_loss = loss
best_acc = acc
torch.save(discriminator.state_dict(), args.cls_save_path)
if loss > opt_dict["best_loss"]:
opt_dict["not_improved"] += 1
if opt_dict["not_improved"] >= decay_epoch and epoch >= args.cls_load_best_epoch:
opt_dict["best_loss"] = loss
opt_dict["not_improved"] = 0
opt_dict["lr"] = opt_dict["lr"] * lr_decay
discriminator.load_state_dict(torch.load(args.cls_save_path))
logger.info('new lr: %f' % opt_dict["lr"])
decay_cnt += 1
optimizer = torch.optim.SGD(discriminator.parameters(), lr=opt_dict["lr"], momentum=args.cls_momentum)
opt_dict['lr'] = opt_dict["lr"]
else:
opt_dict["not_improved"] = 0
opt_dict["best_loss"] = loss
if decay_cnt == max_decay:
break
if epoch % args.cls_test_nepoch == 0:
# with torch.no_grad():
loss, acc = test(logger, device, discriminator, test_data_batch, test_labels_batch, "TEST", args)
# compute importance weighted estimate of log p(x)
discriminator.load_state_dict(torch.load(args.cls_save_path))
cls_loss, cls_acc = test(logger, device, discriminator, test_data_batch, test_labels_batch, "TEST", args)
return cls_loss, cls_acc
def test(logger, device, model, test_data_batch, test_labels_batch, mode, args, verbose=True):
report_correct = report_loss = 0
report_num_words = report_num_sents = 0
for i in np.random.permutation(len(test_data_batch)):
batch_data = test_data_batch[i]
batch_labels = test_labels_batch[i]
batch_labels = [int(x) for x in batch_labels]
batch_labels = torch.tensor(batch_labels, dtype=torch.long, requires_grad=False, device=device)
batch_size, sent_len = batch_data.size()
# not predict start symbol
report_num_words += (sent_len - 1) * batch_size
report_num_sents += batch_size
loss, correct = model.get_performance(batch_data, batch_labels)
loss = loss.sum()
report_loss += loss.item()
report_correct += correct
test_loss = report_loss / report_num_sents
acc = report_correct / report_num_sents
if verbose:
logger.info('%s --- avg_loss: %.4f, acc: %.4f' % (mode, test_loss, acc))
return test_loss, acc
##--------------------------------------------------------------------------------------------------------------------##
def eval(args, logger, data, get_batch, model, device_cpu, device_gpu, compute_kl, meta_optimizer):
# model.eval()
criterion = nn.NLLLoss().to(device_gpu)
num_sents = 0
num_words = 0
total_nll_abp = 0.
total_kl_abp = 0.
for i in range(len(data)):
sents, length, batch_size = get_batch(data, i)
num_words += batch_size * length
num_sents += batch_size
sents = sents.to(device_gpu)
z_0 = sample_p_0(args, sents).to(device_gpu)
model = model.to(device_gpu)
z_samples = model.infer_z(z_0, sents, training=False)[0]
preds = model._dec_forward(sents, z_samples, training=False)
nll_abp = sum([criterion(preds[:, l], sents[:, l + 1]) for l in range(length)])
total_nll_abp += nll_abp.item() * batch_size
# assert total_kl_abp == 0.
nll_abp = (total_nll_abp + total_kl_abp) / num_sents
rec_abp = total_nll_abp / num_sents
logger.info('ABP NLL: %.4f, ABP REC: %.4f' % (nll_abp, rec_abp))
model.train()
return nll_abp, rec_abp
##--------------------------------------------------------------------------------------------------------------------##
def sample_p_0(args, x):
return torch.randn(*[x.size(0), args.latent_dim], device=x.device)
def jacobian(inputs, outputs):
return torch.stack(
[torch.autograd.grad(outputs[:, i].sum(), inputs, retain_graph=True, create_graph=True)[0] for i in
range(outputs.size(1))], dim=-1)
##--------------------------------------------------------------------------------------------------------------------##
def get_exp_id(file):
return os.path.splitext(os.path.basename(file))[0]
def get_output_dir(exp_id):
t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
output_dir = os.path.join('output/' + exp_id, t)
os.makedirs(output_dir, exist_ok=True)
return output_dir
def setup_logging(name, output_dir, console=True):
log_format = logging.Formatter("%(asctime)s : %(message)s")
logger = logging.getLogger(name)
logger.handlers = []
output_file = os.path.join(output_dir, 'output.log')
file_handler = logging.FileHandler(output_file)
file_handler.setFormatter(log_format)
logger.addHandler(file_handler)
if console:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(log_format)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
return logger
def copy_source(file, output_dir):
shutil.copyfile(file, os.path.join(output_dir, os.path.basename(file)))
def set_seed(seed=None):
if seed is None:
seed = random.randint(1, 10000)
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def set_gpu(gpu, deterministic=True):
if torch.cuda.is_available():
torch.cuda.set_device(gpu)
if not deterministic:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
else:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
def merge_dicts(a, b, c):
d = {}
d.update(a)
d.update(b)
d.update(c)
return d
def main():
use_pygrid = True
if use_pygrid:
# TODO enumerate gpu devices here
device_ids = [1]
workers = len(device_ids)
# set devices
pygrid.init_mp()
pygrid.fill_queue(device_ids)
fs_suffix = './'
# set opts
get_opts_filename = lambda exp: fs_suffix + '{}.csv'.format(exp)
exp_id = pygrid.get_exp_id(__file__)
write_opts = lambda opts: pygrid.write_opts(opts, lambda: open(get_opts_filename(exp_id), mode='w'))
read_opts = lambda: pygrid.read_opts(lambda: open(get_opts_filename(exp_id), mode='r'))
output_dir = fs_suffix + pygrid.get_output_dir(exp_id)
os.makedirs(output_dir + '/samples')
if not os.path.exists(get_opts_filename(exp_id)):
write_opts(create_args_grid())
write_opts(pygrid.reset_job_status(read_opts()))
# set logging
logger = pygrid.setup_logging('main', output_dir, console=True)
logger.info('available devices {}'.format(device_ids))
# run
copy_source(__file__, output_dir)
pygrid.run_jobs(logger, exp_id, output_dir, workers, train_grid, read_opts, write_opts, update_job_result)
logger.info('done')
else:
# preamble
exp_id = pygrid.get_exp_id(__file__)
fs_suffix = './'
output_dir = fs_suffix + pygrid.get_output_dir(exp_id)
# run
copy_source(__file__, output_dir)
# opt = create_opts()[0]
opt = {'job_id': int(0), 'status': 'open', 'device': 0}
train(opt, output_dir, output_dir, {})
if __name__ == '__main__':
main()