-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_sri.py
785 lines (638 loc) · 29.2 KB
/
train_sri.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import logging
import datetime
import torch
from torch import cuda
import torch.nn as nn
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import numpy as np
import h5py
import time
from optim_n2n import OptimN2N
from data import Dataset
import utils
import logger
from preprocess_text import Indexer
parser = argparse.ArgumentParser()
# Input data
parser.add_argument('--train_file', default='datasets/ptb/ptb-train.hdf5')
parser.add_argument('--val_file', default='datasets/ptb/ptb-val.hdf5')
parser.add_argument('--test_file', default='datasets/ptb/ptb-test.hdf5')
parser.add_argument('--vocab_file', default='datasets/ptb/ptb.dict')
parser.add_argument('--train_from', default='cache/ckpt/model_ckpt.pt')
parser.add_argument('--eval_only', default=True, type=bool)
# SRI options
parser.add_argument('--z_n_iters', type=int, default=20)
parser.add_argument('--z_step_size', type=float, default=0.2)
parser.add_argument('--z_with_noise', type=int, default=1)
parser.add_argument('--prior_sigma', type=float, default=1.0)
parser.add_argument('--num_z_samples', type=int, default=10)
parser.add_argument('--nll_M', default=10, type=int)
# Model options
parser.add_argument('--latent_dim', default=32, type=int)
parser.add_argument('--enc_word_dim', default=256, type=int)
parser.add_argument('--enc_h_dim', default=256, type=int)
parser.add_argument('--enc_num_layers', default=1, type=int)
parser.add_argument('--dec_word_dim', default=256, type=int)
parser.add_argument('--dec_h_dim', default=256, type=int)
parser.add_argument('--dec_num_layers', default=1, type=int)
parser.add_argument('--dec_dropout', default=0.5, type=float)
parser.add_argument('--model', default='abp', type=str, choices = ['abp', 'vae'])
parser.add_argument('--train_n2n', default=1, type=int)
parser.add_argument('--train_kl', default=1, type=int)
# Optimization options
parser.add_argument('--checkpoint_dir', default='models/ptb')
parser.add_argument('--slurm', default=0, type=int)
parser.add_argument('--warmup', default=0, type=int)
parser.add_argument('--num_epochs', default=60, type=int)
parser.add_argument('--min_epochs', default=15, type=int)
parser.add_argument('--start_epoch', default=0, type=int)
parser.add_argument('--svi_steps', default=10, type=int)
parser.add_argument('--svi_lr1', default=1, type=float)
parser.add_argument('--svi_lr2', default=1, type=float)
parser.add_argument('--eps', default=1e-5, type=float)
parser.add_argument('--decay', default=0, type=int)
parser.add_argument('--momentum', default=0.5, type=float)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--max_grad_norm', default=5, type=float)
parser.add_argument('--svi_max_grad_norm', default=5, type=float)
parser.add_argument('--gpu', default=1, type=int)
parser.add_argument('--seed', default=3435, type=int)
parser.add_argument('--print_every', type=int, default=100)
parser.add_argument('--sample_every', type=int, default=1000)
parser.add_argument('--kl_every', type=int, default=100)
parser.add_argument('--compute_kl', type=int, default=1)
parser.add_argument('--test', type=int, default=0)
##------------------------------------------------------------------------------------------------------------------##
class RNNVAE(nn.Module):
def __init__(self, args, vocab_size=10000,
enc_word_dim=512,
enc_h_dim=1024,
enc_num_layers=1,
dec_word_dim=512,
dec_h_dim=1024,
dec_num_layers=1,
dec_dropout=0.5,
latent_dim=32,
max_sequence_length=40,
mode='savae'):
super(RNNVAE, self).__init__()
self.args = args
self.enc_h_dim = enc_h_dim
self.enc_num_layers = enc_num_layers
self.dec_h_dim = dec_h_dim
self.dec_num_layers = dec_num_layers
self.embedding_size = dec_word_dim
self.latent_dim = latent_dim
self.max_sequence_length = max_sequence_length
self.vocab_size = vocab_size
self.step_sizes = [0.8, 0.7, 0.6, 0.5, 0.2, 0.2, 0.1, 0.1, 0.05] + [0.05] * 11
if mode == 'savae' or mode == 'vae':
self.enc_word_vecs = nn.Embedding(vocab_size, enc_word_dim)
self.latent_linear_mean = nn.Linear(enc_h_dim, latent_dim)
self.latent_linear_logvar = nn.Linear(enc_h_dim, latent_dim)
self.enc_rnn = nn.LSTM(enc_word_dim, enc_h_dim, num_layers=enc_num_layers,
batch_first=True)
self.enc = nn.ModuleList([self.enc_word_vecs, self.enc_rnn,
self.latent_linear_mean, self.latent_linear_logvar])
elif mode == 'autoreg':
latent_dim = 0
self.dec_word_vecs = nn.Embedding(vocab_size, dec_word_dim)
dec_input_size = dec_word_dim
dec_input_size += latent_dim
self.dec_rnn = nn.LSTM(dec_input_size, dec_h_dim, num_layers=dec_num_layers,
batch_first=True)
# self.input_dropout = nn.Dropout(dec_dropout)
# self.out_dropout = nn.Dropout(dec_dropout)
self.dec_linear = nn.Sequential(*[nn.Linear(dec_h_dim, vocab_size),
nn.LogSoftmax(dim=-1)])
self.dec = nn.ModuleList([self.dec_word_vecs, self.dec_rnn, self.dec_linear])
if latent_dim > 0:
self.latent_hidden_linear = nn.Linear(latent_dim, dec_h_dim)
self.dec.append(self.latent_hidden_linear)
def _enc_forward(self, sent):
word_vecs = self.enc_word_vecs(sent)
h0 = Variable(torch.zeros(self.enc_num_layers, word_vecs.size(0),
self.enc_h_dim).type_as(word_vecs.data))
c0 = Variable(torch.zeros(self.enc_num_layers, word_vecs.size(0),
self.enc_h_dim).type_as(word_vecs.data))
enc_h_states, _ = self.enc_rnn(word_vecs, (h0, c0))
enc_h_states_last = enc_h_states[:, -1]
mean = self.latent_linear_mean(enc_h_states_last)
logvar = self.latent_linear_logvar(enc_h_states_last)
return mean, logvar
def _reparameterize(self, mean, logvar, z=None):
std = logvar.mul(0.5).exp()
if z is None:
z = Variable(torch.cuda.FloatTensor(std.size()).normal_(0, 1))
return z.mul(std) + mean
def infer_z(self, z, sent, beta=1., step_size=0.8, training=True, T=0.2):
args = self.args
target = sent.detach().clone()
target = target[:, 1:]
z_grads_norm = []
for i in range(args.z_n_iters):
# z = torch.autograd.Variable(z.detach().clone(), requires_grad=True)
z = z.detach().clone()
z.requires_grad = True
assert z.grad is None
logp = self._dec_forward(sent, z, training=training) # TODO: turn off dropout in inference?
logp = logp.view(-1, logp.size(2))
nll = F.nll_loss(logp, target.reshape(-1), reduction='sum', ignore_index=0) # TODO remove hard-coding
nll.backward()
z_grad = z.grad.detach().clone()
z = z - 0.5 * self.step_sizes[i] * self.step_sizes[i] * (beta*z + z.grad)
if args.z_with_noise:
z += T * self.step_sizes[i] * torch.randn_like(z)
z_grads_norm.append(torch.norm(z_grad, dim=0).mean().cpu().numpy())
z = z.detach()
return z, z_grads_norm
def infer_z_grad(self, z, sent, beta=1., step_size=0.8, training=True, T=0.2):
args = self.args
target = sent.detach().clone()
target = target[:, 1:]
for i in range(args.z_n_iters):
logp = self._dec_forward(sent, z, training=training)
logp = logp.view(-1, logp.size(2))
nll = F.nll_loss(logp, target.reshape(-1), reduction='sum', ignore_index=0) # TODO remove hard-coding
z_grad = torch.autograd.grad(nll, z, retain_graph=True, create_graph=True)[0]
z = z - 0.5 * self.step_sizes[i] * self.step_sizes[i] * (beta * z + z_grad)
if args.z_with_noise:
z += T * self.step_sizes[i] * torch.randn_like(z)
return z
def kl_single(self, z, sent, T, device, beta=1., step_size=0.8, training=True):
z = z.detach().clone().requires_grad_(True)
z_k = self.infer_z_grad(z, sent, beta, step_size, training, T)
J = jacobian(z, z_k).squeeze()
sum_log_abs_det_jacobians = torch.slogdet(J)[1]
if torch.isinf(sum_log_abs_det_jacobians):
logger.info('inf')
prior = torch.distributions.MultivariateNormal(torch.zeros(z.size(-1)).to(device), torch.eye(z.size(-1)).to(device))
log_p_z_0 = prior.log_prob(z.squeeze())
log_p_z_k = prior.log_prob(z_k.squeeze())
kl = log_p_z_0 - sum_log_abs_det_jacobians - log_p_z_k
return kl
def compute_nll_single(self, z, sent, T, device, beta=1., step_size=0.8, training=True):
with torch.backends.cudnn.flags(enabled=False):
z = z.detach().clone().requires_grad_(True)
z_k = self.infer_z_grad(z, sent, beta, step_size, training, T)
J = jacobian(z, z_k).squeeze()
sum_log_abs_det_jacobians = torch.slogdet(J)[1]
if torch.isinf(sum_log_abs_det_jacobians):
logger.info('inf')
prior = torch.distributions.MultivariateNormal(torch.zeros(z.size(-1)).to(device), torch.eye(z.size(-1)).to(device))
log_p_z_0 = prior.log_prob(z.squeeze())
log_p_z_k = prior.log_prob(z_k.squeeze())
kl = log_p_z_k - log_p_z_0 + sum_log_abs_det_jacobians
return kl, z_k
def compute_nll_batch(self, z, sent, device, beta=1., step_size=0.8, training=True):
with torch.backends.cudnn.flags(enabled=False):
# z = z.detach().clone().requires_grad_(True)
# z_k = self.infer_z_grad(z, sent, beta, step_size, training)
# J = jacobian(z, z_k).squeeze()
def compute_jacobian_batch(z, sent, device, beta=beta, step_size=step_size, training=training):
# z = z.detach().clone().requires_grad_(True)
z_k = self.infer_z_grad(z, sent, beta, step_size, training)
return z_k
# J = self.compute_jacobian_batch(z, sent, device, beta=beta, step_size=step_size, training=training)
J = torch.autograd.functional.jacobian(lambda _z: compute_jacobian_batch(_z, sent, device, beta=beta, step_size=step_size, training=training), z)
batch_size = z.size(0)
J = J[range(batch_size), :, range(batch_size), :]
sum_log_abs_det_jacobians = torch.slogdet(J)[1]
z = z.detach().clone().requires_grad_(True)
z_k = self.infer_z(z, sent, beta, step_size, training)[0]
if any(torch.isinf(sum_log_abs_det_jacobians)):
logger.info('inf')
prior = torch.distributions.MultivariateNormal(torch.zeros(z.size(-1)).to(device), torch.eye(z.size(-1)).to(device))
log_p_z_0 = prior.log_prob(z.squeeze())
log_p_z_k = prior.log_prob(z_k.squeeze())
kl = log_p_z_k - log_p_z_0 + sum_log_abs_det_jacobians
return kl, z_k
def _dec_forward(self, sent, q_z, init_h=True, training=True):
self.word_vecs = F.dropout(self.dec_word_vecs(sent[:, :-1]), training=training)
if init_h:
self.h0 = Variable(torch.zeros(self.dec_num_layers, self.word_vecs.size(0), self.dec_h_dim).type_as(self.word_vecs.data), requires_grad=False)
self.c0 = Variable(torch.zeros(self.dec_num_layers, self.word_vecs.size(0), self.dec_h_dim).type_as(self.word_vecs.data), requires_grad=False)
else:
self.h0.data.zero_()
self.c0.data.zero_()
if q_z is not None:
q_z_expand = q_z.unsqueeze(1).expand(self.word_vecs.size(0),
self.word_vecs.size(1), q_z.size(1))
dec_input = torch.cat([self.word_vecs, q_z_expand], 2)
else:
dec_input = self.word_vecs
if q_z is not None:
self.h0[-1] = self.latent_hidden_linear(q_z)
memory, _ = self.dec_rnn(dec_input, (self.h0, self.c0))
dec_linear_input = memory.contiguous()
dec_linear_input = F.dropout(dec_linear_input, training=training)
preds = self.dec_linear(dec_linear_input.view(
self.word_vecs.size(0) * self.word_vecs.size(1), -1)).view(
self.word_vecs.size(0), self.word_vecs.size(1), -1)
return preds
def inference(self, device, sos_idx, max_len=None, n=4, z=None, init_h=True, training=True):
batch_size = z.size(0)
if init_h:
self.h0 = torch.zeros((self.dec_num_layers, batch_size, self.dec_h_dim), dtype=torch.float, device=device, requires_grad=False)
self.c0 = torch.zeros((self.dec_num_layers, batch_size, self.dec_h_dim), dtype=torch.float, device=device, requires_grad=False)
else:
self.h0.data.zero_()
self.c0.data.zero_()
self.h0[-1] = self.latent_hidden_linear(z)
if max_len is None:
max_len = self.max_sequence_length
generations = torch.zeros(batch_size, max_len, dtype=torch.long, device=device)
preds_sequence = torch.zeros(batch_size, max_len, self.vocab_size, dtype=torch.float, device=device)
input_sequence = torch.tensor([sos_idx]*batch_size, dtype=torch.long, device=device)
hidden = (self.h0, self.c0)
for i in range(max_len):
input_embedding = F.dropout(self.dec_word_vecs(input_sequence).view(batch_size, 1, self.embedding_size), training=training)
dec_input = torch.cat([input_embedding, z.view(batch_size, 1, self.latent_dim)], dim=2) #TODO: project z to embedding space before concat?
output, hidden = self.dec_rnn(dec_input, hidden)
dec_linear_input = output.contiguous()
dec_linear_input = F.dropout(dec_linear_input, training=training) #TODO: this dropout is necessary?
preds = self.dec_linear(dec_linear_input.view(batch_size, self.dec_h_dim))
probs = F.softmax(preds, dim=1)
samples = torch.multinomial(probs, 1)
generations[:, i] = samples.view(-1).data
preds_sequence[:, i, :] = preds
input_sequence = samples.view(-1)
return generations, preds_sequence
##--------------------------------------------------------------------------------------------------------------------##
def set_seed(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main(args, output_dir):
set_seed(args.seed)
train_data = Dataset(args.train_file)
val_data = Dataset(args.val_file)
test_data = Dataset(args.test_file)
train_sents = train_data.batch_size.sum()
vocab_size = int(train_data.vocab_size)
logger.info('Train data: %d batches' % len(train_data))
logger.info('Val data: %d batches' % len(val_data))
logger.info('Test data: %d batches' % len(test_data))
logger.info('Word vocab size: %d' % vocab_size)
checkpoint_dir = output_dir
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
suffix = "%s_%s.pt" % (args.model, 'bl')
checkpoint_path = os.path.join(checkpoint_dir, suffix)
indexer = Indexer()
indexer.load_vocab(args.vocab_file)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.train_from == '':
model = RNNVAE(args, vocab_size = vocab_size,
enc_word_dim = args.enc_word_dim,
enc_h_dim = args.enc_h_dim,
enc_num_layers = args.enc_num_layers,
dec_word_dim = args.dec_word_dim,
dec_h_dim = args.dec_h_dim,
dec_num_layers = args.dec_num_layers,
dec_dropout = args.dec_dropout,
latent_dim = args.latent_dim,
mode = args.model)
for param in model.parameters():
param.data.uniform_(-0.1, 0.1)
else:
logger.info('loading model from ' + args.train_from)
checkpoint = torch.load(args.train_from)
model = checkpoint['model']
logger.info("model architecture")
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.warmup == 0:
args.beta = 1.
else:
args.beta = 0.1
criterion = nn.NLLLoss(ignore_index=0)
model.cuda()
criterion.cuda()
model.train()
def variational_loss(input, sents, model, z = None):
mean, logvar = input
z_samples = model._reparameterize(mean, logvar, z)
preds = model._dec_forward(sents, z_samples)
nll = sum([criterion(preds[:, l], sents[:, l+1]) for l in range(preds.size(1))])
kl = utils.kl_loss_diag(mean, logvar)
return nll + args.beta*kl
update_params = list(model.dec.parameters())
meta_optimizer = OptimN2N(variational_loss, model, update_params, eps = args.eps,
lr = [args.svi_lr1, args.svi_lr2],
iters = args.svi_steps, momentum = args.momentum,
acc_param_grads= args.train_n2n == 1,
max_grad_norm = args.svi_max_grad_norm)
# if args.test == 1:
# args.beta = 1
# test_data = Dataset(args.test_file)
# eval(test_data, model, meta_optimizer)
# exit()
t = 0
best_val_nll = 1e5
best_epoch = 0
val_stats = []
epoch = 0
compute_kl = 0
z_means = torch.zeros(5, args.latent_dim, device=device, dtype=torch.float)
train_recons_batch = train_data[100][0][:10, :].to(device)
test_recons_batch = test_data[100][0][:10, :].to(device)
if args.eval_only:
test_nll = eval_multi_batch(logger, args, test_data, model, device, device, 1, args.nll_M, meta_optimizer)
exit()
T = 0.05
while epoch < args.num_epochs:
start_time = time.time()
epoch += 1
logger.info('Starting epoch %d' % epoch)
train_nll_abp = 0.
train_kl_abp = 0.
num_sents = 0
num_words = 0
b = 0
if epoch > 15:
T = min(T+0.05, 0.2)
logger.info(f'T={T}')
checkpoint_path_epoch = f'{output_dir}/model_{epoch}.pt'
model.cpu()
checkpoint = {
'args': args.__dict__,
'model': model,
}
logger.info('Save checkpoint to %s' % checkpoint_path_epoch)
torch.save(checkpoint, checkpoint_path_epoch)
model.cuda()
for i in np.random.permutation(len(train_data)):
if args.warmup > 0:
args.beta = min(1., args.beta + 1./(args.warmup*len(train_data)))
sents, length, batch_size = train_data[i]
if args.gpu >= 0:
sents = sents.cuda()
b += 1
optimizer.zero_grad()
z_0 = sample_p_0(sents)
z_samples, z_grads = model.infer_z(z_0, sents, args.beta, args.z_step_size, T=T)
preds = model._dec_forward(sents, z_samples)
nll_abp = sum([criterion(preds[:, l], sents[:, l+1]) for l in range(length)])
train_nll_abp += nll_abp.item()*batch_size
abp_loss = nll_abp
abp_loss.backward(retain_graph=True)
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm(model.parameters(), args.max_grad_norm)
optimizer.step()
num_sents += batch_size
num_words += batch_size * length
if b % args.sample_every == 0:
z_samples_container = []
for z_i in range(args.num_z_samples):
z_0 = sample_p_0(sents)
z_samples, _ = model.infer_z(z_0, sents, args.beta, args.z_step_size, T=T)
z_samples_container.append(z_samples)
z_means = torch.stack(z_samples_container, dim=2).mean(dim=2)
if b % args.print_every == 0:
with torch.no_grad():
z_var = ' '.join(['{:10.6f}'.format(_z_var) for _z_var in z_means.std(dim=0).pow(2)])
param_norm = sum([p.norm()**2 for p in model.parameters()]).item()**0.5
z_grad_t_str = ' '.join(['{:8.2f}'.format(g) for g in z_grads])
z_norm_str = '[{:8.2f} {:8.2f}]'.format(torch.norm(z_0, dim=1).mean(), torch.norm(z_samples, dim=1).mean())
z_disp_str = '{:8.2f}'.format(torch.norm(z_0 - z_samples, dim=1).mean())
logger.info('Iters={}, Epoch={:4d}, Batch={:4d}/{:4d}, LR={:8.6f}, TrainABP_NLL={:10.4f}, TrainABP_REC={:10.4f}, '
'TrainABP_KL={:10.4f}, TrainABP_PPL={:10.4f}, |Param|={:10.4f}, z_norm_str={}, z_grad_t_str={}, z_disp_str={}, z_var={}, '
'BestValPerf={:10.4f}, BestEpoch={:4d}, Beta={:10.4f}'.format(
t, epoch, b+1, len(train_data), args.lr, (train_nll_abp + train_kl_abp)/num_sents,
train_nll_abp / num_sents, train_kl_abp / num_sents,
np.exp((train_nll_abp + train_kl_abp)/num_words),
param_norm, z_norm_str, z_grad_t_str, z_disp_str, z_var, best_val_nll, best_epoch, args.beta))
epoch_train_time = time.time() - start_time
logger.info('Time Elapsed: %.1fs' % epoch_train_time)
logger.info('--------------------------------')
logger.info('Checking test perf...')
logger.record_tabular('Epoch', epoch)
logger.record_tabular('Mode', 'Test')
logger.record_tabular('LR', args.lr)
logger.record_tabular('Epoch Train Time', epoch_train_time)
compute_kl = 0
test_nll = eval(logger, args, test_data, model, device, device, compute_kl, args.nll_M, meta_optimizer, T)
compute_kl = 0
##--------------------------------------------------------------------------------------------------------------------##
##--------------------------------------------------------------------------------------------------------------------##
def eval(logger, args, data, model, device_cpu, device_gpu, compute_nll, M, meta_optimizer, T):
import random
criterion = nn.NLLLoss().cuda()
num_sents = 0
num_words = 0
total_nll_abp = 0.
total_kl_abp = 0.
nll = 0.
batch_len = 0
kl = 0.
N = 10
while batch_len < (N+1):
batch_id = random.randint(2, len(data)-1)
batch_len = data[batch_id][2]
num_words_ppl = data[batch_id][1]
for l in range(len(data)):
sents, length, batch_size = data[l]
num_words += batch_size * length
num_sents += batch_size
if args.gpu >= 0:
sents = sents.cuda()
z_0 = sample_p_0(sents)
z_samples = model.infer_z(z_0, sents, args.beta, args.z_step_size, training=False)[0]
preds = model._dec_forward(sents, z_samples, training=False)
nll_abp = sum([criterion(preds[:, l], sents[:, l + 1]) for l in range(length)])
total_nll_abp += nll_abp.item() * batch_size
if compute_nll and l == batch_id:
logger.info('batch_id %d' % batch_id)
sents = sents.detach().clone()
negative_kls = torch.zeros(sents.size(0), M).to(device_cpu)
nll_minus_conditional = torch.zeros(sents.size(0), M).to(device_cpu)
model_cpu = model.to(device_cpu)
sents_cpu = sents.to(device_cpu)
targets = sents_cpu.detach().clone()
targets = targets[:, 1:]
for i in range(M):
z_0_cpu = sample_p_0(sents_cpu)
z_k_cpu = torch.zeros_like(z_0_cpu).requires_grad_(True)
for j in range(sents.size(0)):
sents_j = sents_cpu[j, :].unsqueeze(0)
z_0_j = z_0_cpu[j, :].unsqueeze(0)
negative_kl, z_k_j = model_cpu.compute_nll_single(z_0_j, sents_j, T, device_cpu, args.beta, args.z_step_size, training=False)
negative_kls[j, i] = negative_kl.detach().clone()
del negative_kl
z_k_cpu[j, :] = z_k_j.detach().clone()
del z_k_j
logp = model_cpu._dec_forward(sents_cpu, z_k_cpu, training=False)
logp = logp.view(-1, logp.size(2))
nll_conditional = F.nll_loss(logp, targets.reshape(-1), reduction='none', ignore_index=0).view(sents.size(0), sents.size(1)-1).sum(-1)
nll_minus_conditional[:, i] = negative_kls[:, i] - nll_conditional
nll = - (nll_minus_conditional.logsumexp(dim=-1).mean().item() - torch.tensor(M, dtype=torch.float).log().item())
kl = - negative_kls.mean().item()
model = model_cpu.to(device_gpu)
del model_cpu, sents_cpu
# assert total_kl_abp == 0.
nll_abp = nll
rec_abp = total_nll_abp / num_sents
kl_abp = kl
ppl_bound_abp = np.exp(nll / num_words_ppl)
logger.record_tabular('ABP NLL', nll_abp)
logger.record_tabular('ABP REC', rec_abp)
logger.record_tabular('ABP KL', kl_abp)
logger.record_tabular('ABP PPL', ppl_bound_abp)
logger.dump_tabular()
logger.info('ABP NLL: %.4f, ABP REC: %.4f, ABP KL: %.4f, ABP PPL: %.4f' %
(nll_abp, rec_abp, kl_abp, ppl_bound_abp))
model.train()
return ppl_bound_abp
def eval_multi_batch(logger, args, data, model, device_cpu, device_gpu, compute_nll, M, meta_optimizer, T=0.2):
import random
criterion = nn.NLLLoss().cuda()
num_sents = 0
num_words = 0
total_nll_abp = 0.
total_kl_abp = 0.
nll = 0.
batch_len = 0
kl = 0.
N = 10
kls = []
nlls = []
batch_sizes = []
batch_ids_list = random.sample(list(range(len(data))), k=len(data))
logger.info('batch list : {}'.format(batch_ids_list))
batch_ids = batch_ids_list[:80]
num_words_ppl = 0
num_ppl_batch = 0
ppl_stats = []
for l in range(len(data)):
sents, length, batch_size = data[l]
num_words += batch_size * length
num_sents += batch_size
if args.gpu >= 0:
sents = sents.cuda()
z_0 = sample_p_0(sents)
z_samples = model.infer_z(z_0, sents, args.beta, args.z_step_size, training=False)[0]
preds = model._dec_forward(sents, z_samples, training=False)
nll_abp = sum([criterion(preds[:, _l], sents[:, _l + 1]) for _l in range(length)])
total_nll_abp += nll_abp.item() * batch_size
if compute_nll and l in batch_ids:
logger.info('------> batch_id %d' % num_ppl_batch)
num_ppl_batch += 1
sents = sents.detach().clone()
negative_kls = torch.zeros(sents.size(0), M).to(device_cpu)
nll_minus_conditional = torch.zeros(sents.size(0), M).to(device_cpu)
model_cpu = model.to(device_cpu)
sents_cpu = sents.to(device_cpu)
targets = sents_cpu.detach().clone()
targets = targets[:, 1:]
for i in range(M):
z_0_cpu = sample_p_0(sents_cpu)
negative_kl, z_k_j = model_cpu.compute_nll_batch(z_0_cpu, sents, device_cpu, args.beta, args.z_step_size, training=False)
negative_kls[:, i] = negative_kl.detach().clone()
del negative_kl
z_k_cpu = z_k_j.detach().clone()
del z_k_j
logp = model_cpu._dec_forward(sents_cpu, z_k_cpu, training=False)
logp = logp.view(-1, logp.size(2))
nll_conditional = F.nll_loss(logp, targets.reshape(-1), reduction='none', ignore_index=0).view(sents.size(0), sents.size(1)-1).sum(-1)
nll_minus_conditional[:, i] = negative_kls[:, i] - nll_conditional
nll = - (nll_minus_conditional.logsumexp(dim=-1) - torch.tensor(M, dtype=torch.float).log()).sum().item()
kl = - negative_kls.mean(dim=-1).sum().item()
nlls.append(nll)
kls.append(kl)
batch_sizes.append(batch_size)
curr_num_words = batch_size * length
num_words_ppl += curr_num_words
model = model_cpu.to(device_gpu)
del model_cpu, sents_cpu
ppl_stats.append([l, batch_size, length, nll, kl, kl/batch_size, np.exp(nll / curr_num_words), sum(kls) / sum(batch_sizes), np.exp(sum(nlls) / num_words_ppl)])
ppl_stats_np = np.array(ppl_stats)
with open(f'{output_dir}/ppl_stats_{l}.txt', 'wb') as f:
np.save(f, ppl_stats_np)
nll_abp = nll
rec_abp = total_nll_abp / num_sents
kl_abp = sum(kls) / sum(batch_sizes)
ppl_bound_abp = np.exp(sum(nlls) / num_words_ppl)
logger.record_tabular('ABP NLL', nll_abp)
logger.record_tabular('ABP REC', rec_abp)
logger.record_tabular('ABP KL', kl_abp)
logger.record_tabular('ABP PPL', ppl_bound_abp)
logger.dump_tabular()
logger.info('ABP NLL: %.4f, ABP REC: %.4f, ABP KL: %.4f, ABP PPL: %.4f' %
(nll_abp, rec_abp, kl_abp, ppl_bound_abp))
model.train()
return ppl_bound_abp
##--------------------------------------------------------------------------------------------------------------------##
def sample_p_0(x):
return torch.randn(*[x.size(0), args.latent_dim], device=x.device)
def jacobian(inputs, outputs):
return torch.stack(
[torch.autograd.grad(outputs[:, i].sum(), inputs, retain_graph=True, create_graph=True)[0] for i in
range(outputs.size(1))], dim=-1)
def idx2word(idx, i2w, ending_idx):
sent_str = [str()] * len(idx)
for i, sent in enumerate(idx):
for word_id in sent:
word_id = word_id.item()
if word_id == ending_idx:
break
sent_str[i] += i2w[word_id] + " "
sent_str[i] = sent_str[i].strip() + "\n"
return sent_str
def get_exp_id(file):
return os.path.splitext(os.path.basename(file))[0]
def get_output_dir(exp_id):
t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
output_dir = os.path.join('output/' + exp_id, t)
os.makedirs(output_dir, exist_ok=True)
return output_dir
def setup_logging(name, output_dir, console=True):
log_format = logging.Formatter("%(asctime)s : %(message)s")
logger = logging.getLogger(name)
logger.handlers = []
output_file = os.path.join(output_dir, 'output.log')
file_handler = logging.FileHandler(output_file)
file_handler.setFormatter(log_format)
logger.addHandler(file_handler)
if console:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(log_format)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
return logger
def copy_source(file, output_dir):
shutil.copyfile(file, os.path.join(output_dir, os.path.basename(file)))
def set_gpu(gpu, deterministic=True):
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
if torch.cuda.is_available():
torch.cuda.set_device(0)
if torch.cuda.is_available():
if not deterministic:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
else:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
args = parser.parse_args()
exp_id = get_exp_id(__file__)
output_dir = get_output_dir(exp_id)
copy_source(__file__, output_dir)
set_gpu(args.gpu)
with logger.session(dir=output_dir, format_strs=['stdout', 'csv', 'log']):
main(args, output_dir)