diff --git a/dev/.buildinfo b/dev/.buildinfo index 32ccb76a..007c86df 100644 --- a/dev/.buildinfo +++ b/dev/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 -# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: c9b971a4cef27419dda75b6ab29173ec +# This file records the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 6df527d28a47201273662a728cbf7986 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip index 1c5917b3..635c34cf 100644 Binary files a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip and b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip differ diff --git a/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip b/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip index fcf9072b..5409f5fd 100644 Binary files a/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip and b/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip differ diff --git a/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip b/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip index 31271026..2db571d6 100644 Binary files a/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip and b/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip differ diff --git a/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip b/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip index ca71847a..f6e98a2c 100644 Binary files a/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip and b/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip differ diff --git a/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip b/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip index 4693e5bd..b17739ac 100644 Binary files a/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip and b/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip differ diff --git a/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip b/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip index fe1c50b2..5241be69 100644 Binary files a/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip and b/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip differ diff --git a/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip b/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip index 27f7ee19..5feed69f 100644 Binary files a/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip and b/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip differ diff --git a/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip b/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip index d9b0725c..3b449252 100644 Binary files a/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip and b/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip differ diff --git a/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip b/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip index cda48819..7e3aa8a2 100644 Binary files a/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip and b/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip differ diff --git a/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip b/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip index 81a33fd4..451359d1 100644 Binary files a/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip and b/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip differ diff --git a/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip b/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip index 1a7fa456..a14d682f 100644 Binary files a/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip and b/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip differ diff --git a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip index 1051dfbc..4f5fc1a8 100644 Binary files a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip and b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip differ diff --git a/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip b/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip index a64582a2..7946b112 100644 Binary files a/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip and b/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip differ diff --git a/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip b/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip index f668dbf9..d6ba48b7 100644 Binary files a/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip and b/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip differ diff --git a/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip b/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip index db1fe278..7042c229 100644 Binary files a/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip and b/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip differ diff --git a/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip b/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip index d4d5decd..c44b2aa0 100644 Binary files a/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip and b/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip differ diff --git a/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip b/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip index 84f85b36..a93624f0 100644 Binary files a/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip and b/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip differ diff --git a/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip b/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip index b726244f..9a8e3d81 100644 Binary files a/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip and b/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip differ diff --git a/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip b/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip index 0d87fedb..c965b16d 100644 Binary files a/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip and b/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip differ diff --git a/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip b/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip index 7ea0fa25..b7993b81 100644 Binary files a/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip and b/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip differ diff --git a/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip b/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip index 93f5d881..c2716588 100644 Binary files a/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip and b/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip differ diff --git a/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip b/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip index 09584163..6190205d 100644 Binary files a/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip and b/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip differ diff --git a/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip b/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip index 41edb62e..b36da1af 100644 Binary files a/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip and b/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip differ diff --git a/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip b/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip index 3037f035..cb02f235 100644 Binary files a/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip and b/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip differ diff --git a/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip b/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip index f674140a..0ee7dcbb 100644 Binary files a/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip and b/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip differ diff --git a/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip b/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip index e6f56ff5..206c1637 100644 Binary files a/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip and b/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip differ diff --git a/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png b/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png index 09169c02..d2f14297 100644 Binary files a/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png and b/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png differ diff --git a/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png b/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png index 6823f4ad..f507466b 100644 Binary files a/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png and b/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png differ diff --git a/dev/_static/basic.css b/dev/_static/basic.css index 2af6139e..2a9e4114 100644 --- a/dev/_static/basic.css +++ b/dev/_static/basic.css @@ -1,12 +1,5 @@ /* - * basic.css - * ~~~~~~~~~ - * * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * */ /* -- main layout ----------------------------------------------------------- */ @@ -115,15 +108,11 @@ img { /* -- search page ----------------------------------------------------------- */ ul.search { - margin: 10px 0 0 20px; - padding: 0; + margin-top: 10px; } ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; + padding: 5px 0; } ul.search li a { diff --git a/dev/_static/doctools.js b/dev/_static/doctools.js index 4d67807d..0398ebb9 100644 --- a/dev/_static/doctools.js +++ b/dev/_static/doctools.js @@ -1,12 +1,5 @@ /* - * doctools.js - * ~~~~~~~~~~~ - * * Base JavaScript utilities for all Sphinx HTML documentation. - * - * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * */ "use strict"; diff --git a/dev/_static/language_data.js b/dev/_static/language_data.js index 367b8ed8..c7fe6c6f 100644 --- a/dev/_static/language_data.js +++ b/dev/_static/language_data.js @@ -1,13 +1,6 @@ /* - * language_data.js - * ~~~~~~~~~~~~~~~~ - * * This script contains the language-specific data used by searchtools.js, * namely the list of stopwords, stemmer, scorer and splitter. - * - * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * */ var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; diff --git a/dev/_static/searchtools.js b/dev/_static/searchtools.js index b08d58c9..2c774d17 100644 --- a/dev/_static/searchtools.js +++ b/dev/_static/searchtools.js @@ -1,12 +1,5 @@ /* - * searchtools.js - * ~~~~~~~~~~~~~~~~ - * * Sphinx JavaScript utilities for the full-text search. - * - * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * */ "use strict"; @@ -20,7 +13,7 @@ if (typeof Scorer === "undefined") { // and returns the new score. /* score: result => { - const [docname, title, anchor, descr, score, filename] = result + const [docname, title, anchor, descr, score, filename, kind] = result return score }, */ @@ -47,6 +40,14 @@ if (typeof Scorer === "undefined") { }; } +// Global search result kind enum, used by themes to style search results. +class SearchResultKind { + static get index() { return "index"; } + static get object() { return "object"; } + static get text() { return "text"; } + static get title() { return "title"; } +} + const _removeChildren = (element) => { while (element && element.lastChild) element.removeChild(element.lastChild); }; @@ -64,9 +65,13 @@ const _displayItem = (item, searchTerms, highlightTerms) => { const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; const contentRoot = document.documentElement.dataset.content_root; - const [docName, title, anchor, descr, score, _filename] = item; + const [docName, title, anchor, descr, score, _filename, kind] = item; let listItem = document.createElement("li"); + // Add a class representing the item's type: + // can be used by a theme's CSS selector for styling + // See SearchResultKind for the class names. + listItem.classList.add(`kind-${kind}`); let requestUrl; let linkUrl; if (docBuilder === "dirhtml") { @@ -115,8 +120,10 @@ const _finishSearch = (resultCount) => { "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." ); else - Search.status.innerText = _( - "Search finished, found ${resultCount} page(s) matching the search query." + Search.status.innerText = Documentation.ngettext( + "Search finished, found one page matching the search query.", + "Search finished, found ${resultCount} pages matching the search query.", + resultCount, ).replace('${resultCount}', resultCount); }; const _displayNextItem = ( @@ -138,7 +145,7 @@ const _displayNextItem = ( else _finishSearch(resultCount); }; // Helper function used by query() to order search results. -// Each input is an array of [docname, title, anchor, descr, score, filename]. +// Each input is an array of [docname, title, anchor, descr, score, filename, kind]. // Order the results by score (in opposite order of appearance, since the // `_displayNextItem` function uses pop() to retrieve items) and then alphabetically. const _orderResultsByScoreThenName = (a, b) => { @@ -248,6 +255,7 @@ const Search = { searchSummary.classList.add("search-summary"); searchSummary.innerText = ""; const searchList = document.createElement("ul"); + searchList.setAttribute("role", "list"); searchList.classList.add("search"); const out = document.getElementById("search-results"); @@ -318,7 +326,7 @@ const Search = { const indexEntries = Search._index.indexentries; // Collect multiple result groups to be sorted separately and then ordered. - // Each is an array of [docname, title, anchor, descr, score, filename]. + // Each is an array of [docname, title, anchor, descr, score, filename, kind]. const normalResults = []; const nonMainIndexResults = []; @@ -337,6 +345,7 @@ const Search = { null, score + boost, filenames[file], + SearchResultKind.title, ]); } } @@ -354,6 +363,7 @@ const Search = { null, score, filenames[file], + SearchResultKind.index, ]; if (isMain) { normalResults.push(result); @@ -475,6 +485,7 @@ const Search = { descr, score, filenames[match[0]], + SearchResultKind.object, ]); }; Object.keys(objects).forEach((prefix) => @@ -585,6 +596,7 @@ const Search = { null, score, filenames[file], + SearchResultKind.text, ]); } return results; diff --git a/dev/api.html b/dev/api.html index 82d88845..8cc4c534 100644 --- a/dev/api.html +++ b/dev/api.html @@ -42,7 +42,7 @@ - + diff --git a/dev/auto_examples/advanced_training/index.html b/dev/auto_examples/advanced_training/index.html index 04641920..eef0b9e6 100644 --- a/dev/auto_examples/advanced_training/index.html +++ b/dev/auto_examples/advanced_training/index.html @@ -42,7 +42,7 @@ - + diff --git a/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html b/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html index f1f8761f..f5dc792f 100644 --- a/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html +++ b/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html @@ -42,7 +42,7 @@ - + @@ -605,7 +605,7 @@

Preprocessingpreprocess(test_set, [Preprocessor("crop", tmin=0, tmax=24)], n_jobs=-1) -
<braindecode.datasets.base.BaseConcatDataset object at 0x7fc924635060>
+
<braindecode.datasets.base.BaseConcatDataset object at 0x7f9de52995a0>
 

In time series targets setup, targets variables are stored in mne.Raw object as channels @@ -842,14 +842,14 @@

Training

  epoch    r2_train    r2_valid    train_loss    valid_loss      lr     dur
 -------  ----------  ----------  ------------  ------------  ------  ------
-      1    -23.7826     -4.6087        1.8225       11.7419  0.0006  0.5480
-      2     -1.1990     -0.1716        1.5134        2.6475  0.0006  0.4601
-      3     -0.3654     -0.4985        1.2625        3.4645  0.0005  0.4696
-      4     -0.4383     -0.2731        1.2058        2.9438  0.0004  0.4527
-      5     -0.5982     -0.1512        1.1027        2.6529  0.0002  0.4511
-      6     -0.6090     -0.1255        1.1121        2.5886  0.0001  0.4694
-      7     -0.4455     -0.1445        0.9618        2.6339  0.0000  0.4500
-      8     -0.2790     -0.1755        1.0927        2.7063  0.0000  0.4804
+      1    -23.7826     -4.6087        1.8225       11.7419  0.0006  0.5052
+      2     -1.1990     -0.1716        1.5134        2.6475  0.0006  0.4639
+      3     -0.3654     -0.4985        1.2625        3.4645  0.0005  0.4692
+      4     -0.4383     -0.2731        1.2058        2.9438  0.0004  0.4563
+      5     -0.5982     -0.1512        1.1027        2.6529  0.0002  0.4551
+      6     -0.6090     -0.1255        1.1121        2.5886  0.0001  0.4492
+      7     -0.4455     -0.1445        0.9618        2.6339  0.0000  0.4615
+      8     -0.2790     -0.1755        1.0927        2.7063  0.0000  0.4491
 

Obtaining predictions and targets for the test, train, and validation dataset

@@ -970,8 +970,8 @@

Plot Resultsplt.tight_layout()

-plot bcic iv 4 ecog cropped

Total running time of the script: (2 minutes 17.928 seconds)

-

Estimated memory usage: 1446 MB

+plot bcic iv 4 ecog cropped

Total running time of the script: (1 minutes 25.993 seconds)

+

Estimated memory usage: 1600 MB

  epoch    train_accuracy    train_loss    valid_acc    valid_accuracy    valid_loss      lr     dur
 -------  ----------------  ------------  -----------  ----------------  ------------  ------  ------
-      1            0.2639        1.4655       0.2639            0.2639        1.5266  0.0006  1.8168
-      2            0.3299        1.3119       0.3194            0.3194        1.3948  0.0005  1.6408
-      3            0.4757        1.1941       0.2986            0.2986        1.3259  0.0002  1.6393
-      4            0.5625        1.1671       0.3333            0.3333        1.3025  0.0000  1.6244
+      1            0.2639        1.4655       0.2639            0.2639        1.5266  0.0006  1.7808
+      2            0.3299        1.3119       0.3194            0.3194        1.3948  0.0005  1.6071
+      3            0.4757        1.1941       0.2986            0.2986        1.3259  0.0002  1.5875
+      4            0.5625        1.1671       0.3333            0.3333        1.3025  0.0000  1.5972
 
 <class 'braindecode.classifier.EEGClassifier'>[initialized](
   module_=============================================================================================================================================
@@ -850,8 +850,8 @@ 

Setting the data aug -

Total running time of the script: (0 minutes 18.648 seconds)

-

Estimated memory usage: 680 MB

+

Total running time of the script: (0 minutes 17.206 seconds)

+

Estimated memory usage: 1328 MB

-
/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fc9e5173ac0>] to the mne.io.Raw of an EEGWindowsDataset.
+
/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f9de4f855d0>] to the mne.io.Raw of an EEGWindowsDataset.
   warn(
-/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fc9e5173ac0>] to the mne.io.Raw of an EEGWindowsDataset.
+/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f9de4f855d0>] to the mne.io.Raw of an EEGWindowsDataset.
   warn(
-/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7fc9e5173ac0>] to the mne.io.Raw of an EEGWindowsDataset.
+/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f9de4f855d0>] to the mne.io.Raw of an EEGWindowsDataset.
   warn(
 
-<braindecode.datasets.base.BaseConcatDataset object at 0x7fc9e6a5a500>
+<braindecode.datasets.base.BaseConcatDataset object at 0x7f9de4adb1c0>
 
@@ -892,31 +892,31 @@

Training
  epoch    train_acc    train_loss    valid_acc    valid_loss    cp     dur
 -------  -----------  ------------  -----------  ------------  ----  ------
-      1       0.5234        0.7013       0.6680        0.6320     +  1.0838
-      2       0.5938        0.7149       0.4880        0.8358        0.8444
-      3       0.4922        1.0040       0.6440        0.6172     +  0.8465
-      4       0.5234        0.7031       0.6120        0.5990     +  0.8492
-      5       0.5391        0.6751       0.5920        0.6213        0.8361
-      6       0.6719        0.6227       0.5920        0.6263        0.8349
-      7       0.6562        0.6309       0.6240        0.6117        0.8214
-      8       0.6641        0.6272       0.6480        0.5950     +  0.8325
-      9       0.6328        0.6238       0.6680        0.5797     +  0.8385
-     10       0.6406        0.6177       0.6800        0.5746     +  0.8335
-     11       0.6250        0.6323       0.7040        0.5787        0.8255
-     12       0.6094        0.6281       0.6760        0.5772        0.8294
-     13       0.6328        0.6422       0.6880        0.5790        0.8333
-     14       0.6406        0.5920       0.6840        0.5765        0.8364
-     15       0.6562        0.6170       0.6920        0.5730     +  0.8340
-     16       0.7578        0.5608       0.6960        0.5676     +  0.8146
-     17       0.6875        0.5936       0.7120        0.5612     +  0.8391
-     18       0.7734        0.5472       0.7080        0.5500     +  0.8368
-     19       0.7656        0.5245       0.7120        0.5400     +  0.8692
-     20       0.6641        0.5641       0.7160        0.5333     +  0.8372
-     21       0.7422        0.5307       0.7200        0.5272     +  0.8377
-     22       0.7109        0.5499       0.7360        0.5211     +  0.8430
-     23       0.6250        0.6259       0.7400        0.5164     +  0.8440
-     24       0.7031        0.5712       0.7400        0.5120     +  0.8529
-     25       0.7109        0.5030       0.7280        0.5120        0.8420
+      1       0.5234        0.7013       0.6680        0.6320     +  0.9723
+      2       0.5938        0.7149       0.4880        0.8358        0.8442
+      3       0.4922        1.0040       0.6440        0.6172     +  0.8541
+      4       0.5234        0.7031       0.6120        0.5990     +  0.8623
+      5       0.5391        0.6751       0.5920        0.6213        0.8614
+      6       0.6719        0.6227       0.5920        0.6263        0.8541
+      7       0.6562        0.6309       0.6240        0.6117        0.8575
+      8       0.6641        0.6272       0.6480        0.5950     +  0.8401
+      9       0.6328        0.6238       0.6680        0.5797     +  0.8538
+     10       0.6406        0.6177       0.6800        0.5746     +  0.8623
+     11       0.6250        0.6323       0.7040        0.5787        0.8557
+     12       0.6094        0.6281       0.6760        0.5772        0.8501
+     13       0.6328        0.6422       0.6880        0.5790        0.8371
+     14       0.6406        0.5920       0.6840        0.5765        0.8376
+     15       0.6562        0.6170       0.6920        0.5730     +  0.8528
+     16       0.7578        0.5608       0.6960        0.5676     +  0.8549
+     17       0.6875        0.5936       0.7120        0.5612     +  0.8510
+     18       0.7734        0.5472       0.7080        0.5500     +  0.8569
+     19       0.7656        0.5245       0.7120        0.5400     +  0.8370
+     20       0.6641        0.5641       0.7160        0.5333     +  0.8474
+     21       0.7422        0.5307       0.7200        0.5272     +  0.8595
+     22       0.7109        0.5499       0.7360        0.5211     +  0.8488
+     23       0.6250        0.6259       0.7400        0.5164     +  0.8480
+     24       0.7031        0.5712       0.7400        0.5120     +  0.8391
+     25       0.7109        0.5030       0.7280        0.5120        0.8608
 /home/runner/.local/lib/python3.10/site-packages/skorch/net.py:2626: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
   return torch.load(f_name, map_location=map_location)
 
@@ -1102,7 +1102,7 @@

Using the learned re ax.legend()

-plot relative positioning
<matplotlib.legend.Legend object at 0x7fc920a29690>
+plot relative positioning
<matplotlib.legend.Legend object at 0x7f9de4d24af0>
 

We see that there is sleep stage-related structure in the embedding. A @@ -1159,8 +1159,8 @@

References -

Total running time of the script: (1 minutes 48.543 seconds)

-

Estimated memory usage: 781 MB

+

Total running time of the script: (2 minutes 13.137 seconds)

+

Estimated memory usage: 1014 MB