-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadamod.py
141 lines (122 loc) · 5.16 KB
/
adamod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import math
import torch
from torch.optim.optimizer import Optimizer
from torch_optimizer.subtypes import Betas2, OptFloat, OptLossClosure, Params
__all__ = ('AdaMod',)
class AdaMod(Optimizer):
r"""Implements AdaMod algorithm.
It has been proposed in `Adaptive and Momental Bounds for Adaptive
Learning Rate Methods`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
betas: coefficients used for computing running averages of gradient
and its square (default: (0.9, 0.999))
beta3: smoothing coefficient for adaptive learning rates
(default: 0.9999)
eps: term added to the denominator to improve numerical stability
(default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)
Example:
__ https://arxiv.org/abs/1910.12249
Note:
Reference code: https://github.com/lancopku/AdaMod
"""
def __init__(
self,
params: Params,
lr: float = 1e-3,
betas: Betas2 = (0.9, 0.999),
beta3: float = 0.999,
eps: float = 1e-8,
weight_decay: float = 0,
) -> None:
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if eps < 0.0:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
'Invalid beta parameter at index 0: {}'.format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
'Invalid beta parameter at index 1: {}'.format(betas[1])
)
if not 0.0 <= beta3 < 1.0:
raise ValueError('Invalid beta3 parameter: {}'.format(beta3))
if weight_decay < 0.0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
defaults = dict(
lr=lr, betas=betas, beta3=beta3, eps=eps, weight_decay=weight_decay
)
super(AdaMod, self).__init__(params, defaults)
def step(self, closure: OptLossClosure = None) -> OptFloat:
"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
msg = 'AdaMod does not support sparse gradients'
raise RuntimeError(msg)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of actual learning rates
state['exp_avg_lr'] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
exp_avg, exp_avg_sq, exp_avg_lr = (
state['exp_avg'],
state['exp_avg_sq'],
state['exp_avg_lr'],
)
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = (
group['lr']
* math.sqrt(bias_correction2)
/ bias_correction1
)
if group['weight_decay'] != 0:
p.data.add_(
p.data, alpha=-group['weight_decay'] * group['lr']
)
# Applies momental bounds on actual learning rates
step_size = torch.full_like(
denom, step_size, memory_format=torch.preserve_format
)
step_size.div_(denom)
exp_avg_lr.mul_(group['beta3']).add_(
step_size, alpha=1 - group['beta3']
)
step_size = torch.min(step_size, exp_avg_lr)
step_size.mul_(exp_avg)
p.data.add_(-step_size)
return