You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Generating type 1 features...
Generating type 2 features...
Generating type 3 features...
Generating type 4 features...
Training 6526017 features...
BOOSTING ROUND 1
Selected ((0, 11), (0, 9)) ((0, 10), (0, 10)) -1 -1.0 0.0
Boosted classifier has 1 features with ensemble false positive rate
0.00000 and error 0.00000.
Boosting concluded with 1 classifiers and remaining background
proportion: 0.00000
And here's the output from testing:
PS D:\PC Media Files\Desktop\ViolaJones-master> python violajones.py -f data/f/ -b data/n/ -l cascade_save.json -t test.
jpg -v
Evaluating cascade in 0 image patches.
Traceback (most recent call last):
File "violajones.py", line 439, in
run()
File "D:\PC Media Files\Desktop\Python\lib\site-packages\click\core.py", line 722, in call
return self.main(*args, **kwargs)
File "D:\PC Media Files\Desktop\Python\lib\site-packages\click\core.py", line 697, in main
rv = self.invoke(ctx)
File "D:\PC Media Files\Desktop\Python\lib\site-packages\click\core.py", line 895, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "D:\PC Media Files\Desktop\Python\lib\site-packages\click\core.py", line 535, in invoke
return callback(*args, **kwargs)
File "violajones.py", line 434, in run
face_indices = get_cascade_prediction(cascade, np.array(integral_images), np.array(indices), verbose=verbose)
File "violajones.py", line 386, in get_cascade_prediction
classifiers, alphas, +0.25 * threshold, integral_image(integral_images), integral_images[:1]
File "D:\PC Media Files\Desktop\ViolaJones-master\util.py", line 36, in integral_image
return arr.cumsum(axis=-1).cumsum(axis=-2)
numpy.core._internal.AxisError: axis -2 is out of bounds for array of dimension 1
The text was updated successfully, but these errors were encountered:
Even though training completes, I can not test the cascade. Here's the training output for 5 positive and 5 negative examples.
Importing face examples from: data/f/ ...
Importing background examples from: data/n/ ...
Generating type 1 features...
Generating type 2 features...
Generating type 3 features...
Generating type 4 features...
Training 6526017 features...
BOOSTING ROUND 1
Selected ((0, 11), (0, 9)) ((0, 10), (0, 10)) -1 -1.0 0.0
Boosted classifier has 1 features with ensemble false positive rate
0.00000 and error 0.00000.
Boosting concluded with 1 classifiers and remaining background
proportion: 0.00000
And here's the output from testing:
PS D:\PC Media Files\Desktop\ViolaJones-master> python violajones.py -f data/f/ -b data/n/ -l cascade_save.json -t test.
jpg -v
Evaluating cascade in 0 image patches.
Traceback (most recent call last):
File "violajones.py", line 439, in
run()
File "D:\PC Media Files\Desktop\Python\lib\site-packages\click\core.py", line 722, in call
return self.main(*args, **kwargs)
File "D:\PC Media Files\Desktop\Python\lib\site-packages\click\core.py", line 697, in main
rv = self.invoke(ctx)
File "D:\PC Media Files\Desktop\Python\lib\site-packages\click\core.py", line 895, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "D:\PC Media Files\Desktop\Python\lib\site-packages\click\core.py", line 535, in invoke
return callback(*args, **kwargs)
File "violajones.py", line 434, in run
face_indices = get_cascade_prediction(cascade, np.array(integral_images), np.array(indices), verbose=verbose)
File "violajones.py", line 386, in get_cascade_prediction
classifiers, alphas, +0.25 * threshold, integral_image(integral_images), integral_images[:1]
File "D:\PC Media Files\Desktop\ViolaJones-master\util.py", line 36, in integral_image
return arr.cumsum(axis=-1).cumsum(axis=-2)
numpy.core._internal.AxisError: axis -2 is out of bounds for array of dimension 1
The text was updated successfully, but these errors were encountered: