-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathapp.py
282 lines (228 loc) · 10.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import torch
import trimesh
from accelerate.utils import set_seed
from accelerate import Accelerator
import numpy as np
import gradio as gr
from mesh_to_pc import process_mesh_to_pc
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from PIL import Image
import io
from MeshAnything.models.meshanything_v2 import MeshAnythingV2
model = MeshAnythingV2.from_pretrained("Yiwen-ntu/meshanythingv2")
device = torch.device('cuda')
accelerator = Accelerator(
mixed_precision="fp16",
)
model = accelerator.prepare(model)
model.eval()
print("Model loaded to device")
def wireframe_render(mesh):
views = [
(90, 20), (270, 20)
]
mesh.vertices = mesh.vertices[:, [0, 2, 1]]
bounding_box = mesh.bounds
center = mesh.centroid
scale = np.ptp(bounding_box, axis=0).max()
fig = plt.figure(figsize=(10, 10))
# Function to render and return each view as an image
def render_view(mesh, azimuth, elevation):
ax = fig.add_subplot(111, projection='3d')
ax.set_axis_off()
# Extract vertices and faces for plotting
vertices = mesh.vertices
faces = mesh.faces
# Plot faces
ax.add_collection3d(Poly3DCollection(
vertices[faces],
facecolors=(0.8, 0.5, 0.2, 1.0), # Brownish yellow
edgecolors='k',
linewidths=0.5,
))
# Set limits and center the view on the object
ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)
# Set view angle
ax.view_init(elev=elevation, azim=azimuth)
# Save the figure to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
plt.clf()
buf.seek(0)
return Image.open(buf)
# Render each view and store in a list
images = [render_view(mesh, az, el) for az, el in views]
# Combine images horizontally
widths, heights = zip(*(i.size for i in images))
total_width = sum(widths)
max_height = max(heights)
combined_image = Image.new('RGBA', (total_width, max_height))
x_offset = 0
for img in images:
combined_image.paste(img, (x_offset, 0))
x_offset += img.width
# Save the combined image
save_path = f"combined_mesh_view_{int(time.time())}.png"
combined_image.save(save_path)
plt.close(fig)
return save_path
@torch.no_grad()
def do_inference(input_3d, sample_seed=0, do_sampling=False, do_marching_cubes=False):
set_seed(sample_seed)
print("Seed value:", sample_seed)
input_mesh = trimesh.load(input_3d)
pc_list, mesh_list = process_mesh_to_pc([input_mesh], marching_cubes = do_marching_cubes)
pc_normal = pc_list[0] # 4096, 6
mesh = mesh_list[0]
vertices = mesh.vertices
pc_coor = pc_normal[:, :3]
normals = pc_normal[:, 3:]
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
# scale mesh and pc
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
vertices = vertices / (bounds[1] - bounds[0]).max()
mesh.vertices = vertices
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
pc_coor = pc_coor / (bounds[1] - bounds[0]).max()
mesh.merge_vertices()
mesh.update_faces(mesh.nondegenerate_faces())
mesh.update_faces(mesh.unique_faces())
mesh.remove_unreferenced_vertices()
mesh.fix_normals()
try:
if mesh.visual.vertex_colors is not None:
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
else:
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
except Exception as e:
print(e)
input_save_name = f"processed_input_{int(time.time())}.obj"
mesh.export(input_save_name)
input_render_res = wireframe_render(mesh)
pc_coor = pc_coor / np.abs(pc_coor).max() * 0.99 # input should be from -1 to 1
assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
print("Data loaded")
# with accelerator.autocast():
with accelerator.autocast():
outputs = model(input, do_sampling)
print("Model inference done")
recon_mesh = outputs[0]
valid_mask = torch.all(~torch.isnan(recon_mesh.reshape((-1, 9))), dim=1)
recon_mesh = recon_mesh[valid_mask] # nvalid_face x 3 x 3
vertices = recon_mesh.reshape(-1, 3).cpu()
vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
triangles = vertices_index.reshape(-1, 3)
artist_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
merge_primitives=True)
artist_mesh.merge_vertices()
artist_mesh.update_faces(artist_mesh.nondegenerate_faces())
artist_mesh.update_faces(artist_mesh.unique_faces())
artist_mesh.remove_unreferenced_vertices()
artist_mesh.fix_normals()
if artist_mesh.visual.vertex_colors is not None:
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
else:
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
num_faces = len(artist_mesh.faces)
brown_color = np.array([165, 42, 42, 255], dtype=np.uint8)
face_colors = np.tile(brown_color, (num_faces, 1))
artist_mesh.visual.face_colors = face_colors
# add time stamp to avoid cache
save_name = f"output_{int(time.time())}.obj"
artist_mesh.export(save_name)
output_render = wireframe_render(artist_mesh)
return input_save_name, input_render_res, save_name, output_render
_HEADER_ = '''
<h2><b>Official ? Gradio Demo</b></h2><h2><a href='https://github.com/buaacyw/MeshAnything' target='_blank'><b>MeshAnything V2: Artist-Created Mesh Generation With Adjacent Mesh Tokenization</b></a></h2>
**MeshAnything** converts any 3D representation into meshes created by human artists, i.e., Artist-Created Meshes (AMs).
Code: <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>GitHub</a>. Arxiv Paper: <a href='https://arxiv.org/abs/2406.10163' target='_blank'>ArXiv</a>.
??????**Important Notes:**
- Gradio doesn't support interactive wireframe rendering currently. For interactive mesh visualization, please use download the obj file and open it with MeshLab or https://3dviewer.net/.
- The input mesh will be normalized to a unit bounding box. The up vector of the input mesh should be +Y for better results. Click **Preprocess with Marching Cubes** if the input mesh is a manually created mesh.
- Limited by computational resources, MeshAnything is trained on meshes with fewer than 800 faces and cannot generate meshes with more than 800 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 800 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality.
- For point cloud input, please refer to our github repo <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>GitHub</a>.
'''
_CITE_ = r"""
If MeshAnything is helpful, please help to ? the <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>Github Repo</a>. Thanks!
---
? **License**
S-Lab-1.0 LICENSE. Please refer to the [LICENSE file](https://github.com/buaacyw/GaussianEditor/blob/master/LICENSE.txt) for details.
? **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
output_model_obj = gr.Model3D(
label="Generated Mesh (OBJ Format)",
display_mode="wireframe",
clear_color=[1, 1, 1, 1],
)
preprocess_model_obj = gr.Model3D(
label="Processed Input Mesh (OBJ Format)",
display_mode="wireframe",
clear_color=[1, 1, 1, 1],
)
input_image_render = gr.Image(
label="Wireframe Render of Processed Input Mesh",
)
output_image_render = gr.Image(
label="Wireframe Render of Generated Mesh",
)
with (gr.Blocks() as demo):
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_3d = gr.Model3D(
label="Input Mesh",
display_mode = "wireframe",
clear_color=[1,1,1,1],
)
with gr.Row():
with gr.Group():
do_marching_cubes = gr.Checkbox(label="Preprocess with Marching Cubes", value=False)
do_sampling = gr.Checkbox(label="Random Sampling", value=False)
sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
mesh_examples = gr.Examples(
examples=[
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
],
inputs=input_3d,
outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
fn=do_inference,
cache_examples = False,
examples_per_page=10
)
with gr.Column():
with gr.Row():
input_image_render.render()
with gr.Row():
with gr.Tab("OBJ"):
preprocess_model_obj.render()
with gr.Row():
output_image_render.render()
with gr.Row():
with gr.Tab("OBJ"):
output_model_obj.render()
with gr.Row():
gr.Markdown('''Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying''')
gr.Markdown(_CITE_)
mv_images = gr.State()
submit.click(
fn=do_inference,
inputs=[input_3d, sample_seed, do_sampling, do_marching_cubes],
outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
)
demo.launch(share=True)