-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
389 lines (280 loc) · 14.7 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import numpy as np
import pandas as pd
import Orange
import csv
from io import StringIO
from collections import OrderedDict
from Orange.data import Table, Domain, ContinuousVariable, DiscreteVariable
import UtilsDataset
import random
import UtilsFactory
import Orange.evaluation.scoring
import sklearn.metrics
import AbstractLearner, KMeansLearner
from sklearn.metrics import silhouette_score
import scipy.spatial.distance as sdist
from nltk import flatten
from sklearn.preprocessing import MinMaxScaler
CLASSIFIER = 'classifier'
DATASET = 'dataset'
PSO = 'pso'
MAINWINDOWTITLE = "PSO FEATURE SELECTION"
rangeClusterValues = [6, 12, 18]
'''
Funcoes de Conversao de pandas.dataframe para Orange.data.Table, nao foi necessario o seu uso
'''
def pandas_to_orange(df):
domain, attributes, metas = construct_domain(df)
orange_table = Orange.data.Table.from_numpy(domain = domain, X = df[attributes].values, Y = None, metas = df[metas].values, W = None)
return orange_table
def construct_domain(df):
columns = OrderedDict(df.dtypes)
attributes = OrderedDict()
metas = OrderedDict()
for name, dtype in columns.items():
if issubclass(dtype.type, np.number):
if len(df[name].unique()) >= 13 or issubclass(dtype.type, np.inexact) or (df[name].max() > len(df[name].unique())):
attributes[name] = Orange.data.ContinuousVariable(name)
else:
df[name] = df[name].astype(str)
attributes[name] = Orange.data.DiscreteVariable(name, values = sorted(df[name].unique().tolist()))
else:
metas[name] = Orange.data.StringVariable(name)
domain = Orange.data.Domain(attributes = attributes.values(), metas = metas.values())
return domain, list(attributes.keys()), list(metas.keys())
'''
Funcoes que manipulam o conteudo do dataset recebido inicialmente no ficheiro tab,
o seu conteudo encontra-se mal representado por exemplo:
- os targets nao tem conteudo: necessario definir o array de targets
- os dados "array X", conteudo as classes (targets) e metadata: é necessario eliminar estes dados (cada coluna do array X)
'''
def transformMatrixDatasetInCorrectFormat(dataset : UtilsDataset.UtilsDataset):
#TRANSFORMACAO INICIAL DAS COLUNAS#
defineColumnsTable(dataset.getDataset())
#TIRAR COLUNAS A MAIS DOS DADOS--> ARRAY X, OU SEJA, LEN(X)-FEATURES = ULTIMOS DADOS A MAIS
deleteColumnsMoreOverData_X(dataset.getDataset())
return dataset
def defineColumnsTable(table : Orange.data.Table):
#CHAMADA FUNCAO getIndexOutput --> POSICAO DO ATRIBUTO CLASSE --> TARGETS DO DATASET
indexOfClass = getIndexOutput(table)
#AGORA BASTA POPULAR O ARRAY Y --> COM OS TARGETS REFERENTES A CADA UMA DAS LINHAS DE DADOS (X)--> NA COLUNA REFERENTE À CLASSE (INDICE RETORNADO)
allOutputs = np.array([output for output in table.X[:,indexOfClass]]) #--> 24 valores, visto que sao 24 linhas neste exemplo
table.Y = allOutputs #--> COMO O TABLE.Y É UM NUMPY ARRAY, TIVE DE CONVERTER O ALLOUTPUTS PARA NUMPY ARRAY
return table
def getIndexOutput(table : Orange.data.Table):
return table.domain.index("class")
def deleteColumnsMoreOverData_X(table : Orange.data.Table):
#GET INDEX OF ATTRIBUTE CLASS ON DATA
classIndex = getIndexOutput(table)
#GET TOTAL COLUMNS DATA
columns = table.X.shape[1]
#APAGAR COLUNAS QUE VAO DESDE A CLASS INDEX ATE AO INDEX COLUMNS --> REFORMULAR MATRIZ X
for j in range(table.X.shape[1]-1, classIndex-1, -1): #TEM DE ESTAR AO CONTRARTO (DO ULTIMO PARA O INDEX DA CLASSE) PORQUE COMO APAGO, FICAM MENOS COLUNAS, E SE COMECASSE PELA ORDEM HABITUAL, GERAVA INDEX OUT OF BOUNDS, PORQUE ACEDI A COLUNAS QUE JA FORAM APAGADAS, COMECANDO AO CONTRARIO NAO HÁ PROBLEMA
table.X = np.delete(table.X, j, axis=1) #AXIS = 1 --> REPRESENTA O EIXO DAS COLUNAS
return table
'''
GENERATE RANDOM VALUE BETWEEN TWO VALUES --> 2 DECIMAL CASES
'''
def generateRandomValue(minLimit,maxLimit):
return round(random.uniform(minLimit,maxLimit),2)
'''
TRANSFORM LIST INTO NUMPY ARRAY
'''
def listToNumpy(list):
return np.array(list)
'''
CRIACAO DE UM DATASET QUE É UMA COPIA DO DATASET INICIAL, MAS COM UM NUMERO DE FEATURES MAIS COMPACTA, DEPOIS DE APLICADO O ALGORITMO, OS TARGETS MANTEM-SE
'''
def createCloneOfReducedDataset(dataset : UtilsDataset.UtilsDataset, bestPos):
try:
if not isinstance(dataset, UtilsDataset.UtilsDataset):
raise TypeError
#CRIACAO DE UM NOVO OBJETO UTILS DATASET E DEPOIS EDITAR O DATASET
copyOfDataset = dataset.deepCopy()
#RECRIACAO DO ARRAY X TENDO EM CONTA A REFORMULACAO DE DADOS --> NECESSITO DO BESTPOS (ARRAY) RETORNADO PELO PSO--> MELHOR POSICAO ENCONTRADA
copyOfDataset.getDataset().X = np.delete(copyOfDataset.getDataset().X, np.argwhere(bestPos==0), axis=1)
return copyOfDataset
except:
print('Catched error')
return None
'''
FUNCAO QUE IMPRIME OS RESULTADOS DA PREVISAO
'''
def print_results(real, predictions):
'''
I need to pass average and labels arguments to metrics, because i'm just trying to predict x samples, and not everything
Link: https://stackoverflow.com/questions/43162506/undefinedmetricwarning-f-score-is-ill-defined-and-being-set-to-0-0-in-labels-wi/47285662
'''
print("Real:\t",real)
print("Previsoes:\t",predictions)
loss = sklearn.metrics.f1_score(real,predictions, average='weighted', labels=np.unique(predictions))
accuracy = sklearn.metrics.accuracy_score(real,predictions)
precision = sklearn.metrics.precision_score(real,predictions, average='weighted', labels=np.unique(predictions))
recall = sklearn.metrics.recall_score(real,predictions, average='weighted', labels=np.unique(predictions))
print('f1_score=', loss)
print('accuracy=', accuracy)
print ('precision=', precision)
print ('recall=', recall)
'''
FUNCOES QUE APLICAM A IDEIA DO ALGORITMO DE SELECCAO DE FEATURES, RECORRENDO AO PSO
'''
def createEmptyNumpyArray(nParticles, nDimensions):
'''
:param nParticles: nº de particulas
:param nDimensions: nº de dimensoes do problema
:return: numpy Array com shape de (nParticles, nDimensions), com todos os valores a 0
'''
emptyArray = np.zeros(shape=(nParticles,nDimensions))
return emptyArray
def generateListRandomValues(min, max, numberOfValues):
'''
THIS METHOD AVOIDS REPEATED NUMBERS
:param min: min value on list --> em principio 0
:param max: max value on list --> number of Particles
:param numberOfValues: numberValues to sort --> por exemplo quero apenas 100 features
:return: array with numberOfValues values sorted
'''
listAllValues = list(range(min,max))
random.shuffle(listAllValues)
myList = list() #CRIACAO DE UMA LISTA VAZIA
for i in range(numberOfValues):
myList.append(listAllValues.pop()) #VAI BUSCAR UM VALOR AO ARRAY SORTEADO
return myList
def selectRelevantFeaturesByParticle(indexParticle, listFeatures, listParticlesDimensions):
'''
:param indexParticle: indice da particula
:param listFeatures: features relevantes sorteadas (para colcar na particula com valor 1)
:param listParticlesDimensions: lista com as posicoes das particulas
:return: lista atualizada--> valores das features de apenas uma particula
'''
for j in listFeatures:
listParticlesDimensions[indexParticle][j] = 1
return listParticlesDimensions
def createArrayInitialPos(nParticles, nDimensions, nRelevantFeatures):
'''
:param n_particles: numero de particulas a utilizar no algoritmo
:param nDimensions: dimensoes do problema (nº de features)
:param nRelevantFeatures: numero de features que devem estar a 1 (sao relevantes)
:return: numpy array, com shape de (nParticles, nDimensions), preenchido com valores a 1 = nRelevantFeatures --> aleatoriamente
'''
emptyArray = createEmptyNumpyArray(nParticles, nDimensions)
for i in range(nParticles):
listRandomValues = generateListRandomValues(0, nDimensions, nRelevantFeatures)
emptyArray = selectRelevantFeaturesByParticle(i,listRandomValues,emptyArray)
return emptyArray
'''
CLUSTERS
'''
def applyTranspostMatrix(dataset : UtilsDataset.UtilsDataset):
'''
:param dataset: matriz do dataset a fazer transposicao
:return: deep copy da matriz transposta
'''
transposeMatrix = dataset.deepCopy()
transposeMatrix.getDataset().X = np.transpose(transposeMatrix.getDataset().X)
return transposeMatrix
def getBestValueOfK(dataset : UtilsDataset.UtilsDataset):
'''
Fontes : https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py
https://stats.stackexchange.com/questions/10540/how-to-interpret-mean-of-silhouette-plot
:param listRangeValuesK: lista com possiveis valores de K
:return: valor de k, que apresenta melhor score, recorrendo ao silhouette
'''
bestKValue = rangeClusterValues[0]
silhouetteAvg = 0.0
for cluster in rangeClusterValues:
clusterInEvaluation = KMeansLearner.KMeansLearner(cluster)
clusterPredictions = clusterInEvaluation.getLearner().fit_predict(dataset.getDataset().X)
silAvg = silhouette_score(dataset.getDataset().X, clusterPredictions)
if silAvg > silhouetteAvg : #MAIOR INTERDEPENDENCIA ENTRE CLUSTERS
silhouetteAvg = silAvg
bestKValue = cluster
return bestKValue
def applyClustering(clusterNumber, dataset : UtilsDataset.UtilsDataset):
'''
:param dataset: dataset a treinar
:return: retorno do objeto KMeans utilizado no treino
'''
kmeans = KMeansLearner.KMeansLearner(clusterNumber) #CRIACAO DO OBJETO
kmeans.getLearner().fit_predict(dataset.getDataset().X) #TREINO
return kmeans
def findLabelWithSpecificDistance(distance, kMeans : KMeansLearner.KMeansLearner, dataset: UtilsDataset.UtilsDataset):
'''
:param distance : distancia
:param kMeans: objeto kmeans
:param dataset: dataset
:return: retorno feature (posicao) relativa à distancia passada por argumento
'''
for i in range(len(kMeans.getLearner().cluster_centers_)):
for j in range(len(kMeans.getLearner().labels_)):
if i == kMeans.getLearner().labels_[j]:
if (np.linalg.norm(dataset.getDataset().X[j] - kMeans.getLearner().cluster_centers_[i]) == distance):
return j
def getBestValuesForCluster(manyValues, kMeans : KMeansLearner.KMeansLearner, dataset: UtilsDataset.UtilsDataset):
'''
:param manyValues: quantos valores pretendo por cluster
:param kMeans: objeto KMeans
:return: lista com os atributos mais relevantes, de cada cluster, matriz[linhas, colunas]--> linhas = features de cada cluster
'''
#Fonte: https://stackoverflow.com/questions/51309526/kmeans-euclidean-distance-to-each-centroid-avoid-splitting-features-from-rest-of
controlNumberValues = 0
arrayBestFeaturesPerCluster = [[None]*manyValues for i in range(60)]
arrayPositionsPerCluster = [[None]*manyValues for i in range(60)]
for i in range(len(kMeans.getLearner().cluster_centers_)):
controlNumberValues = 0
for j in range(len(kMeans.getLearner().labels_)):
if i == kMeans.getLearner().labels_[j]:
distance = np.linalg.norm(dataset.getDataset().X[j]- kMeans.getLearner().cluster_centers_[i])
if (len(arrayBestFeaturesPerCluster[i]) - arrayBestFeaturesPerCluster[i].count(None))< manyValues: #SE AINDA TEM ESPACO COLOCA LA A DISTANCIA
arrayBestFeaturesPerCluster[i][controlNumberValues] = distance
arrayPositionsPerCluster[i][controlNumberValues] = j
else:
arrayBestFeaturesPerCluster[i].sort() #COLOCO POR ORDEM OS VALORES, OU SEJA O MELHOR NO INICIO E O PIOR NO FIM
if arrayBestFeaturesPerCluster[i][controlNumberValues] > distance: #SE O NOVO VALOR FOR MENOR, QUE O PIOR, COLOCO-O LÁ
indexWorstPosition = findLabelWithSpecificDistance(arrayBestFeaturesPerCluster[i][controlNumberValues], kMeans,dataset) #OBTENCAO DO INDICE COM A PIOR POSICAO
indexToRemove = arrayPositionsPerCluster[i].index(indexWorstPosition) #OBTENCAO DO INDICE ONDE ESTA A POSICAO COM PIOR DISTANCIA
arrayPositionsPerCluster[i][indexToRemove] = j
arrayBestFeaturesPerCluster[i][controlNumberValues] = distance #ATUALIZO A DISTANCIA
if controlNumberValues < manyValues-1: #APENAS ITERO A VARIAVEL QUANDO NAO TENHO AINDA OS ELEMENTOS QUE PRETENDO, CASO CONTRARIO FICA SEMPRE NA ULTIMA POSICAO
controlNumberValues+=1
return arrayPositionsPerCluster
'''
TRANSFORM DATASET IN REDUCED DATASET --> USING CLONE FUNCTION--> IMPORT FOR CREATE CLONE OF NEW'S DATASET
'''
def createBinaryNumpyArrayWithReducedFeatures(relevantFeatures, dataset: UtilsDataset.UtilsDataset):
'''
:param relevantFeatures: array with relevant features
:return: numpy binary array with 0 or 1 --> 1 relevant features
'''
oneDArray = flatten(relevantFeatures) #PASSAGEM DE 2D ARRAY PARA 1D ARRAY
oneDArray = [i for i in oneDArray if i is not None]#ELIMINACAO DE POSSIVEIS NONE'S QUE POSSAM EXISTIR
#print(oneDArray)
emptyArray = np.zeros(dataset.getDataset().X.shape[1]) #PASSO O DATASET OFICIAL E NAO O TRANSPOSTO
for i in oneDArray:
emptyArray[i] = 1
return emptyArray
'''
APPLY SCALER TO FEATURES OF DATASET, USING MINMAXSCALER
'''
def applyMinMaxScaler(dataset : UtilsDataset.UtilsDataset):
scaler = MinMaxScaler()
scaler.fit(dataset.getDataset().X) #COMPUTACAO DOS VALORES DE MIN E MAX A UTILIZAR NA COMPUTACAO
dataset.getDataset().X = scaler.transform(dataset.getDataset().X) #APLICACAO DA ESCALA AS FEATURES DO DATASET, DE ACORDO COM O RANGE ESTABELECIDO NO FIT
#O SCALER TRANSFORM RETORNA O DATASET ALTERADO --> CONVEM FAZER COPIAS, PARA MANTER OS DADOS ORIGINAIS SEGUROS
return dataset
def getSpecificSamples(dataset : UtilsDataset.UtilsDataset, indexOfSamples):
'''
:param dataset: dataset of problem
:param indexOfSamples: indexes that i want from my dataset
:return: numpy array with specific data (specific samples)
'''
listSpecificSamples = np.array([dataset.getDataset().X[i] for i in indexOfSamples])
return listSpecificSamples
def getSpecificOutputsFromDataset(dataset : UtilsDataset.UtilsDataset, indexOfOutputs):
'''
:param dataset: dataset of problem
:param indexOfOutputs: list of indexes of outputs that i want
:return: numpy array with values from specific indexes of outputs
'''
listSpecificOutputs = np.array([dataset.getDataset().Y[i] for i in indexOfOutputs])
return listSpecificOutputs