forked from xuetsing/cats-vs-dogs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_data.py
146 lines (119 loc) · 4.44 KB
/
input_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import tensorflow as tf
import numpy as np
import os
import math
# you need to change this to your data directory
train_dir = '/kaggle/working/data/train/'
def get_files(file_dir, ratio):
"""
Args:
file_dir: file directory
ratio:ratio of validation datasets
Returns:
list of images and labels
"""
cats = []
label_cats = []
dogs = []
label_dogs = []
for file in os.listdir(file_dir):
name = file.split(sep='.')
if name[0]=='cat':
cats.append(file_dir + file)
label_cats.append(0)
else:
dogs.append(file_dir + file)
label_dogs.append(1)
print('There are %d cats\nThere are %d dogs' %(len(cats), len(dogs)))
image_list = np.hstack((cats, dogs))
label_list = np.hstack((label_cats, label_dogs))
temp = np.array([image_list, label_list])
temp = temp.transpose()
np.random.shuffle(temp)
all_image_list = temp[:, 0]
all_label_list = temp[:, 1]
n_sample = len(all_label_list)
n_val = math.ceil(n_sample*ratio) # number of validation samples
n_train = n_sample - n_val # number of trainning samples
tra_images = all_image_list[0:n_train]
tra_labels = all_label_list[0:n_train]
tra_labels = [int(float(i)) for i in tra_labels]
val_images = all_image_list[n_train:-1]
val_labels = all_label_list[n_train:-1]
val_labels = [int(float(i)) for i in val_labels]
return tra_images,tra_labels,val_images,val_labels
def get_batch(image, label, image_W, image_H, batch_size, capacity):
"""
Args:
image: list type
label: list type
image_W: image width
image_H: image height
batch_size: batch size
capacity: the maximum elements in queue
Returns:
image_batch: 4D tensor [batch_size, width, height, 3], dtype=tf.float32
label_batch: 1D tensor [batch_size], dtype=tf.int32
"""
image = tf.cast(image, tf.string)
label = tf.cast(label, tf.int32)
# make an input queue
input_queue = tf.train.slice_input_producer([image, label])
label = input_queue[1]
image_contents = tf.read_file(input_queue[0])
image = tf.image.decode_jpeg(image_contents, channels=3)
image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
# if you want to test the generated batches of images, you might want to comment the following line.
image = tf.image.per_image_standardization(image)
image_batch, label_batch = tf.train.batch([image, label],
batch_size= batch_size,
num_threads= 64,
capacity = capacity)
#you can also use shuffle_batch
# image_batch, label_batch = tf.train.shuffle_batch([image,label],
# batch_size=BATCH_SIZE,
# num_threads=64,
# capacity=CAPACITY,
# min_after_dequeue=CAPACITY-1)
label_batch = tf.reshape(label_batch, [batch_size])
image_batch = tf.cast(image_batch, tf.float32)
return image_batch, label_batch
# TEST
# To test the generated batches of images
# When training the model, Do comment the following codes
#import matplotlib.pyplot as plt
#
#BATCH_SIZE = 2
#CAPACITY = 256
#IMG_W = 208
#IMG_H = 208
#
#train_dir = '/home/acrobat/DataSets/cats_vs_dogs/train/'
#ratio = 0.2
#tra_images, tra_labels, val_images, val_labels = get_files(train_dir, ratio)
#tra_image_batch, tra_label_batch = get_batch(tra_images, tra_labels, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
#
#
#
#with tf.Session() as sess:
# i = 0
# coord = tf.train.Coordinator()
# threads = tf.train.start_queue_runners(coord=coord)
#
# try:
# while not coord.should_stop() and i<1:
#
# img, label = sess.run([tra_image_batch, tra_label_batch])
#
# # just test one batch
# for j in np.arange(BATCH_SIZE):
# print('label: %d' %label[j])
# plt.imshow(img[j,:,:,:])
# plt.show()
# i+=1
#
# except tf.errors.OutOfRangeError:
# print('done!')
# finally:
# coord.request_stop()
# coord.join(threads)