-
Notifications
You must be signed in to change notification settings - Fork 23
/
test.py
44 lines (34 loc) · 1.19 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
from keras.datasets import mnist
from keras.utils import to_categorical
from model import ELM
def main():
num_classes = 10
num_hidden_layers = 1024
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Process images into input vectors
# each mnist image is a 28x28 picture with value ranges between 0 and 255
x_train = x_train.astype(np.float32) / 255.
x_train = x_train.reshape(-1, 28 ** 2)
x_test = x_test.astype(np.float32) / 255.
x_test = x_test.reshape(-1, 28 ** 2)
# converts [1,2] into [[0,1,0], [0,0,1]]
y_train = to_categorical(y_train, num_classes).astype(np.float32)
y_test = to_categorical(y_test, num_classes).astype(np.float32)
# create instance of our model
model = ELM(
28 ** 2,
num_hidden_layers,
num_classes
)
# Train
model.fit(x_train, y_train)
train_loss, train_acc = model.evaluate(x_train, y_train)
print('train loss: %f' % train_loss)
print('train acc: %f' % train_acc)
# Validation
val_loss, val_acc = model.evaluate(x_test, y_test)
print('val loss: %f' % val_loss)
print('val acc: %f' % val_acc)
if __name__ == '__main__':
main()