This repository has been archived by the owner on Apr 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathshow_tracking.py
205 lines (157 loc) · 6.8 KB
/
show_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import tensorflow as tf
gpu = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpu[0], True)
# tf.config.set_visible_devices([], 'GPU')
import time
from helpers.bb_helper import get_bb
from absl.flags import FLAGS
from absl import app, flags
from model.siamese.classification_model import create_model, create_embedding_model
from model.siamese.config import cfg
from object_detection.builders import model_builder
from object_detection.utils import config_util
from object_detection.utils import label_map_util
import itertools
import numpy as np
import cv2
import os
from model.tracker.tracker import Tracker
from model.siamese.siamese_model import DefaultSiameseModel
from model.tracker import get_embeddings
# flags.DEFINE_string('weights', f'{cfg.MODEL.WEIGHTS_PATH}siam-model-91_0.0518_0.5930.h5',
# 'path to weights file')
flags.DEFINE_integer('num', '16',
'number of objects to track')
flags.DEFINE_string('video', '.',
'path to video')
WINDOW_SIZE = (800, 600)
def get_keypoint_tuples(eval_config):
"""Return a tuple list of keypoint edges from the eval config.
Args:
eval_config: an eval config containing the keypoint edges
Returns:
a list of edge tuples, each in the format (start, end)
"""
tuple_list = []
kp_list = eval_config.keypoint_edge
for edge in kp_list:
tuple_list.append((edge.start, edge.end))
return tuple_list
def get_model_detection_function(model):
"""Get a tf.function for detection."""
@tf.function
def detect_fn(image):
"""Detect objects in image."""
image, shapes = model.preprocess(image)
prediction_dict = model.predict(image, shapes)
detections = model.postprocess(prediction_dict, shapes)
return detections, prediction_dict, tf.reshape(shapes, [-1])
return detect_fn
def main(argv):
tracked_objects = None
font = cv2.FONT_HERSHEY_SIMPLEX
if __name__ == '__main__':
pipeline_config = 'model/detection_model/inference_graph/pipeline.config'
model_dir = 'model/detection_model/inference_graph/checkpoint'
configs = config_util.get_configs_from_pipeline_file(pipeline_config)
model_config = configs['model']
detection_model = model_builder.build(
model_config=model_config, is_training=False)
# detection_model.feature_extractor.build((640, 640))
# print(detection_model.feature_extractor.classification_backbone)
# for layer in detection_model.feature_extractor.classification_backbone.layers:
# print(layer.name)
# exit()
ckpt = tf.compat.v2.train.Checkpoint(
model=detection_model)
ckpt.restore(os.path.join(model_dir, 'ckpt-0')).expect_partial()
detect_fn = get_model_detection_function(detection_model)
label_map_path = os.path.join(
"model/detection_model/", configs['eval_input_config'].label_map_path)
label_map = label_map_util.load_labelmap(label_map_path)
categories = label_map_util.convert_label_map_to_categories(
label_map,
max_num_classes=label_map_util.get_max_label_map_index(label_map),
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
label_map_dict = label_map_util.get_label_map_dict(
label_map, use_display_name=True)
# siamese_net = create_model()
# siamese_net.load_weights(FLAGS.weights)
# siamese_net = create_embedding_model(siamese_net)
cap = cv2.VideoCapture(FLAGS.video)
i = 0
frame_start = 0
# tracker = Tracker(paths_num=FLAGS.num, appearance_weight=0.5, max_euclidean_distance=10)
tracker = Tracker(paths_num=FLAGS.num)
weights_dir = os.path.join(
"model/siamese/weights", "MobileNetV2", "siam-118-0.0001-1.0a_0.0633.h5"
)
base_model = 'MobileNetV2'
siamese_obj = DefaultSiameseModel(weights_path=weights_dir, base_model=base_model)
out = cv2.VideoWriter('output.avi',cv2.VideoWriter_fourcc(*'DIVX'), 5, WINDOW_SIZE)
while(cap.isOpened()):
frame_end = time.time()
print(f'fps: {1/(frame_end-frame_start)}')
frame_start = time.time()
ret, frame = cap.read()
i += 1
if frame is None:
break
frame = frame.astype('uint8')
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
input_tensor = tf.convert_to_tensor(
np.expand_dims(rgb_frame, 0), dtype=tf.float32)
detections, predictions_dict, shapes = detect_fn(input_tensor)
resized = cv2.resize(frame, WINDOW_SIZE)
boxes = get_bb(
resized,
detections['detection_boxes'][0].numpy(),
(detections['detection_classes'][0].numpy() + 1).astype(int),
detections['detection_scores'][0].numpy(),
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.30,
agnostic_mode=False,
keypoints=None,
keypoint_scores=None,
keypoint_edges=get_keypoint_tuples(configs['eval_config']))
boxes_tensors = []
for box in boxes:
x1, y1, x2, y2 = box
width = x2-x1
height = y2-y1
[bb_image] = tf.image.crop_to_bounding_box(
input_tensor,
int(y1*input_tensor.shape[1]),
int(x1*input_tensor.shape[2]),
int(height*input_tensor.shape[1]),
int(width*input_tensor.shape[2])
)
boxes_tensors.append(bb_image)
embeddings = siamese_obj.predict(boxes_tensors)
# embeddings = get_embeddings(input_tensor, list(boxes.keys()), siamese_net, cfg.NN.INPUT_SIZE)
tracker.run(boxes, embeddings)
history = tracker.get_history()
for track_id, track_history in history.items():
x, y = track_history[-1]
x = int(x*resized.shape[1])
y = int(y*resized.shape[0])
cv2.putText(resized, str(track_id), (x, y), font, .5,
(255, 255, 255), 2, cv2.LINE_AA)
cv2.imshow('frame', resized)
# if out:
out.write(resized)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
# if out:
# out.release()
out.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass