-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path记录.txt
61 lines (45 loc) · 4.18 KB
/
记录.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
{'ctc': array([0., 0.])}
{'the_input': array([[[[ 83., 58., 52.],
[ 80., 57., 48.],
[ 79., 54., 45.],
...,
[112., 69., 55.],
[109., 70., 56.],
[108., 70., 57.]]]]),
'the_labels': array([[13., 44., 60., 38., 34., 34., 55.], [13., 44., 46., 37., 64., 31., 31.]], dtype=float32),
'label_length': array([[7.],[7.]]),
'input_length': array([[18.], [18.]])}
python main.py train -ti ../Data/car_recognition/train -tl ../Data/car_recognition/train/labels_normal.txt -vi ../Data/car_recognition/test -vl ../Data/car_recognition/test/labels_normal.txt -b 2 -img-size 164 48 -n 1 -lr 0.001 -c checkpoints/weights_blue.h5 -pre checkpoints/weights_green.h5 -log log
========================================================================================================================
{'ctc': array([0., 0.])}
{'the_input': array([[[[102., 73., 68.],
[102., 73., 68.],
[103., 73., 68.],
...,
[ 83., 110., 71.],
[ 86., 113., 74.],
[ 86., 111., 73.]]]]),
'the_labels': array([[array([13., 44., 46., 37., 64., 31., 31.]), array([22., 41., 44., 36., 33., 31., 32., 34.])]], dtype=object),
'label_length': array([[7.], [8.]]),
'input_length': array([[18.], [18.]])}
========================================================================================================================
{'ctc': array([0., 0., 0., 0.])}
{'the_input': array([[[[ 59., 41., 34.],
[ 65., 43., 37.],
[ 63., 44., 36.],
...,
[ 51., 51., 42.],
[ 53., 55., 43.],
[ 55., 58., 43.]]]]),
'the_labels': array([[13., 44., 63., 34., 33., 34., 55.],
[13., 44., 37., 33., 38., 31., 54.],
[13., 44., 64., 32., 37., 39., 42.],
[13., 44., 52., 46., 40., 39., 31.]]),
'label_length': array([[7.],[7.],[7.],[7.]]),
'input_length': array([[18.],[18.],[18.], [18.]])}
python train.py train -ti ../Data/car_recognition/train -tl ../Data/car_recognition/train/labels_normal.txt -vi ../Data/car_recognition/test -vl ../Data/car_recognition/test/labels_normal.txt -b 2 -img-size 164 48 -n 1 -lr 0.001 -c checkpoints/weights_blue.h5 -pre checkpoints/weights_green.h5 -log log
========================================================================================================================
['blue_1/481401_\xe9\x97\xbdDV733Q_0.png', 'blue_1/481563_\xe9\x97\xbdDV733Q_0.png', 'blue_1/482743_\xe9\x97\xbdDY323Q_0.png', 'blue_1/484548_\xe9\x97\xbdDY323Q_0.png', 'province_4/9247538_\xe5\xb7\x9dAD52013_0.jpg', 'province_4/9276921_\xe7\x90\xbcBD06886_0.jpg', 'province_4/7978441_\xe8\xb4\xb5GD07572_0.jpg', 'province_4/9452885_\xe6\xa1\x82AD05533_0.jpg', 'province_4/8700964_\xe8\xb4\xb5GD07572_0.jpg']
[array([ 13., 44., 60., 38., 34., 34., 55.]), array([ 13., 44., 60., 38., 34., 34., 55.]), array([ 13., 44., 63., 34., 33., 34., 55.]), array([ 13., 44., 63., 34., 33., 34., 55.]), array([ 22., 41., 44., 36., 33., 31., 32., 34.]), array([ 21., 42., 44., 31., 37., 39., 39., 37.]), array([ 23., 47., 44., 31., 38., 36., 38., 33.]), array([ 20., 41., 44., 31., 36., 36., 34., 34.]), array([ 23., 47., 44., 31., 38., 36., 38., 33.])]
['blue_1/496987_\xe9\x97\xbdDY323Q_0.png', 'blue_1/496996_\xe9\x97\xbdD6270P_0.png', 'blue_1/497287_\xe9\x97\xbdDZ168B_0.png', 'blue_1/498627_\xe9\x97\xbdDMF980_0.png', 'green_1/8361806_\xe7\xb2\xa4BD90237_0.jpg', 'green_1/8362293_\xe7\xb2\xa4BF74368_0.jpg', 'green_1/8367540_\xe7\xb2\xa4BDA4158_0.jpg', 'green_1/8367864_\xe7\xb2\xa4BDD8590_0.jpg', 'green_1/8368216_\xe7\xb2\xa4BD77262_0.jpg', 'green_1/8377166_\xe7\xb2\xa4BDB5935_0.jpg']
[array([ 13., 44., 63., 34., 33., 34., 55.]), array([ 13., 44., 37., 33., 38., 31., 54.]), array([ 13., 44., 64., 32., 37., 39., 42.]), array([ 13., 44., 52., 46., 40., 39., 31.]), array([ 19., 42., 44., 40., 31., 33., 34., 38.]), array([ 19., 42., 46., 38., 35., 34., 37., 39.]), array([ 19., 42., 44., 41., 35., 32., 36., 39.]), array([ 19., 42., 44., 44., 39., 36., 40., 31.]), array([ 19., 42., 44., 38., 38., 33., 37., 33.]), array([ 19., 42., 44., 42., 36., 40., 34., 36.])]