forked from CPJKU/madmom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDBNDownBeatTracker
executable file
·100 lines (76 loc) · 3.14 KB
/
DBNDownBeatTracker
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
# encoding: utf-8
"""
DBNDownBeatTracker downbeat tracking algorithm.
"""
from __future__ import absolute_import, division, print_function
import argparse
from madmom.audio.signal import SignalProcessor
from madmom.features import (ActivationsProcessor,
DBNDownBeatTrackingProcessor,
RNNDownBeatProcessor)
from madmom.io import write_beats, write_downbeats
from madmom.processors import IOProcessor, io_arguments
def main():
"""DBNDownBeatTracker"""
# define parser
p = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter, description='''
The DBNDownBeatTracker program detects all beats and downbeats in an audio
file according to the method described in:
"Joint Beat and Downbeat Tracking with Recurrent Neural Networks"
Sebastian Böck, Florian Krebs and Gerhard Widmer.
Proceedings of the 17th International Society for Music Information
Retrieval Conference (ISMIR), 2016.
This program can be run in 'single' file mode to process a single audio
file and write the detected beats to STDOUT or the given output file.
$ DBNDownBeatTracker single INFILE [-o OUTFILE]
If multiple audio files should be processed, the program can also be run
in 'batch' mode to save the detected beats to files with the given suffix.
$ DBNDownBeatTracker batch [-o OUTPUT_DIR] [-s OUTPUT_SUFFIX] FILES
If no output directory is given, the program writes the files with the
detected beats to the same location as the audio files.
The 'pickle' mode can be used to store the used parameters to be able to
exactly reproduce experiments.
''')
# version
p.add_argument('--version', action='version',
version='DBNDownBeatTracker')
# input/output options
io_arguments(p, output_suffix='.beats.txt')
ActivationsProcessor.add_arguments(p)
# signal processing arguments
SignalProcessor.add_arguments(p, norm=False, gain=0)
# peak picking arguments
DBNDownBeatTrackingProcessor.add_arguments(p, beats_per_bar=[3, 4])
# parse arguments
args = p.parse_args()
# set immutable arguments
args.fps = 100
# print arguments
if args.verbose:
print(args)
# input processor
if args.load:
# load the activations from file
in_processor = ActivationsProcessor(mode='r', **vars(args))
else:
# use a RNN to predict the beats
in_processor = RNNDownBeatProcessor(**vars(args))
# output processor
if args.save:
# save the RNN beat activations to file
out_processor = ActivationsProcessor(mode='w', **vars(args))
else:
# track the (down-)beats with a DBN and output them
out_processor = [DBNDownBeatTrackingProcessor(**vars(args))]
if args.downbeats:
out_processor.append(write_downbeats)
else:
out_processor.append(write_beats)
# create an IOProcessor
processor = IOProcessor(in_processor, out_processor)
# and call the processing function
args.func(processor, **vars(args))
if __name__ == '__main__':
main()